A chemically modified alpha-amylase with a molten-globule state has entropically driven enhanced thermal stability

dc.contributor.authorSiddiqui, KSen_AU
dc.contributor.authorPoljak, Aen_AU
dc.contributor.authorFrancisci, Den_AU
dc.contributor.authorGuerriero, Gen_AU
dc.contributor.authorPilak, Oen_AU
dc.contributor.authorBurg, Den_AU
dc.contributor.authorRaftery, MJen_AU
dc.contributor.authorParkin, DMen_AU
dc.contributor.authorTrewhella, Jen_AU
dc.contributor.authorCavicchioli, Ren_AU
dc.date.accessioned2011-11-22T23:16:54Zen_AU
dc.date.available2011-11-22T23:16:54Zen_AU
dc.date.issued2010-10-01en_AU
dc.date.statistics2011-11-18en_AU
dc.description.abstractThe thermostability properties of TAA were investigated by chemically modifying carboxyl groups on the surface of the enzyme with AMEs. The TAA(MOD) exhibited a 200% improvement in starch-hydrolyzing productivity at 60 degrees C. By studying the kinetic, thermodynamic and biophysical properties, we found that TAAMOD had formed a thermostable, MG state, in which the unfolding of the tertiary structure preceded that of the secondary structure by at least 20 degrees C. The X-ray crystal structure of TAAMOD revealed no new permanent interactions (electrostatic or other) resulting from the modification. By deriving thermodynamic activation parameters of TAAMOD, we rationalised that thermostabilisation have been caused by a decrease in the entropy of the transition state, rather than being enthalpically driven. Far-UV CD shows that the origin of decreased entropy may have arisen from a higher helical content of TAAMOD. This study provides new insight into the intriguing properties of an MG state resulting from the chemical modification of TAA.© 2010, Oxford University Press (OUP)en_AU
dc.identifier.citationSiddiqui, K. S., Poljak, A., De Francisci, D., Guerriero. G., Pilak, O., Burg, D., Rafterfy, M. J., Parkin, D. M., Trewhella, J., & Cavicchioli, R. (2010). A chemically modified α-amylase with a molten-globule state has entropically driven enhanced thermal stability. Protein Engineering, Design and Selection, 23(10), 769-780. doi:10.1093/protein/gzq051en_AU
dc.identifier.govdoc3775en_AU
dc.identifier.issn1741-0126en_AU
dc.identifier.issue10en_AU
dc.identifier.journaltitleProtein Engineering, Design and Selectionen_AU
dc.identifier.pagination769-680en_AU
dc.identifier.urihttp://dx.doi.org/10.1093/protein/gzq051en_AU
dc.identifier.urihttp://apo.ansto.gov.au/dspace/handle/10238/3881en_AU
dc.identifier.volume23en_AU
dc.language.isoenen_AU
dc.publisherOxford University Pressen_AU
dc.subjectCalorimetryen_AU
dc.subjectThermodynamicsen_AU
dc.subjectCrystallographyen_AU
dc.subjectProtein structureen_AU
dc.subjectKineticsen_AU
dc.subjectEnzymesen_AU
dc.titleA chemically modified alpha-amylase with a molten-globule state has entropically driven enhanced thermal stabilityen_AU
dc.typeJournal Articleen_AU
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
gzq051.pdf
Size:
518.34 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections