Effects of chain length on oligopeptide hydrogelation
No Thumbnail Available
Date
2011-03-21
Journal Title
Journal ISSN
Volume Title
Publisher
Royal Society of Chemistry
Abstract
The co-assembly of mutually complementary, but self-repulsive oligopeptide pairs into viscoelastic hydrogels has been studied. Oligopeptides of 6, 10, and 14 amino acid residues were used to investigate the effects of peptide chain length on the structural and mechanical properties of the resulting hydrogels. Biophysical characterizations, including dynamic rheometry, small-angle X-ray scattering (SAXS) and fluorescence spectroscopy, were used to investigate hydrogelation at the bulk, fiber, and molecular levels, respectively. Upon mixing, the 10-mer peptides and the 14-mer peptides both form hydrogels while the 6-mer peptides do not. SAXS studies point to morphological similarity of the cross-sections of fibers underlying the 10 : 10 and 14 : 14 gels. However, fluorescence spectroscopy data suggest tighter packing of the amino acid side chains in the 10 : 10 fibers. Consistent with this tighter packing, dynamic rheometry data show that the 10 : 10 gel has much higher elastic modulus than the 14 : 14-mer (18 kPa vs. 0.1 kPa). Therefore, from the standpoint of mechanical strength, the optimum peptide chain length for this class of oligopeptide-based hydrogels is around 10 amino acid residues. © 2010, Royal Society of Chemistry.
Description
Keywords
Amino acid sequence, X-ray diffraction, Fluorescence spectroscopy, Residues, Hydrogels, Peptides
Citation
Taraban, M.B., Ramachandran, S., Gryczynski, I., Gryczynski, Z., Trewhella, J., Yu, Y.H.B. (2011). Effects of chain length on oligopeptide hydrogelation, Soft Matter, 7(6), 2624-2631. doi:10.1039/c0sm00919a