New SPE column packing material: Retention assessment method and its application for the radionuclide chromatographic separation

dc.contributor.authorLe, VSen_AU
dc.contributor.authorMorcos, Nen_AU
dc.date.accessioned2011-07-21T04:07:04Zen_AU
dc.date.available2011-07-21T04:07:04Zen_AU
dc.date.issued2008-03-01en_AU
dc.date.statistics2011-07-21en_AU
dc.description.abstractThe preparation of the OASIS®-HLB sorbent based solid phase extraction (SPE) resins and their application for the 177Lu radioisotope separation were investigated. Di-(2-ethylhexyl) orthophosphoric acid (HDEHP) impregnated OASIS-HLB sorbent based SPE resins (OASIS-HDEHP) were successfully developed from this investigation. The wettable porosity structure of the moderately extractant impregnated OASIS-HDEHP resins is favorable for the effective diffusion of polar and ionic solutes giving good separation performance. Its good wetting ability offers ease of packing into conventional chromatographic columns. Their off-gassing-free operation makes OASIS-HDEHP columns good for long term use with highly consistent elution dynamics (several dozens of separations perfectly achievable on the same column). The simple method for the capacity factor (k’) evaluation was developed to facilitate the characterization of the SPE chromatographic resin column. A competent procedure using OASISE30RS resin (one member of the OASIS-HDEHP resin group) for the separation of no-carrier added (n.c.a) 177Lu from the bulk amount of Yb target was developed. This separation procedure has showed very good performance with several prominent advantages such as the much shorter separation time (5–6 hours) and high reproducibility. Its high adsorption capacity for Yb and Lu makes it ideal for the separation of the bulky sample (50 mg Yb target for the 20 g weight resin column) for the production of the several Ci of 177Lu radioactivity. © 2008, Springer.en_AU
dc.identifier.citationLe, V.S., Morcos, N. (2008). New SPE column packing material: Retention assessment method and its application for the radionuclide chromatographic separation. Journal of Radioanalytical and Nuclear Chemistry, 277(3), 651–661. doi:10.1007/s10967-007-7131-1en_AU
dc.identifier.govdoc3381en_AU
dc.identifier.issn0236-5731en_AU
dc.identifier.issue3en_AU
dc.identifier.journaltitleJournal of Radioanalytical and Nuclear Chemistryen_AU
dc.identifier.pagination651-661en_AU
dc.identifier.urihttps://doi.org/10.1007/s10967-007-7131-1en_AU
dc.identifier.urihttp://apo.ansto.gov.au/dspace/handle/10238/3608en_AU
dc.identifier.volume277en_AU
dc.language.isoenen_AU
dc.publisherSpringeren_AU
dc.subjectRetentionen_AU
dc.subjectLutetium 177en_AU
dc.subjectHDEHPen_AU
dc.subjectRadiochromatographyen_AU
dc.subjectResinsen_AU
dc.subjectExtraction columnsen_AU
dc.titleNew SPE column packing material: Retention assessment method and its application for the radionuclide chromatographic separationen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections