Metal-organic frameworks with exceptionally high methane uptake: where and how is methane stored?

dc.contributor.authorWu, Hen_AU
dc.contributor.authorSimmons, JMen_AU
dc.contributor.authorLiu, Yen_AU
dc.contributor.authorBrown, CMen_AU
dc.contributor.authorWang, XSen_AU
dc.contributor.authorMa, Sen_AU
dc.contributor.authorPeterson, VKen_AU
dc.contributor.authorSouthon, PDen_AU
dc.contributor.authorKepert, CJen_AU
dc.contributor.authorZhou, HCen_AU
dc.contributor.authorYildirim, Ten_AU
dc.contributor.authorZhou, Wen_AU
dc.date.accessioned2010-06-15T04:40:49Zen_AU
dc.date.available2010-06-15T04:40:49Zen_AU
dc.date.issued2010-05-03en_AU
dc.date.statistics2010-05-03en_AU
dc.description.abstractMetal–organic frameworks (MOFs) are a novel family of physisorptive materials that have exhibited great promise for methane storage. So far, a detailed understanding of their methane adsorption mechanism is still scarce. Herein, we report a comprehensive mechanistic study of methane storage in three milestone MOF compounds (HKUST-1, PCN-11, and PCN-14) the CH4 storage capacities of which are among the highest reported so far among all porous materials. The three MOFs consist of the same dicopper paddlewheel secondary building units, but contain different organic linkers, leading to cagelike pores with various sizes and geometries. From neutron powder diffraction experiments and accurate data analysis, assisted by grand canonical Monte Carlo (GCMC) simulations and DFT calculations, we anambiguously revealed the exact locations of the stored methane molecules in these MOF materials. We found that methane uptake takes place primarily at two types of strong adsorption site: 1) the open Cu coordination sites, which exhibit enhanced Coulomb attraction toward methane, and 2) the van der Waals potential pocket sites, in which the total dispersive interactions are enhanced due to the molecule being in contact with multiple “surfaces”. Interestingly, the enhanced van der Waals sites are present exclusively in small cages and at the windows to these cages, whereas large cages with relatively flat pore surfaces bind very little methane. Our results suggest that further, rational development of new MOF compounds for methane storage applications should focus on enriching open metal sites, increasing the volume percentage of accessible small cages and channels, and minimizing the fraction of large pores. © 2010, Wiley-VCH Verlag Berlinen_AU
dc.identifier.citationWu, H., Simmons, J. M., Liu, Y., Brown, C. M., Wang, X. S., Ma, S., Peterson, V. K., Southon, P. D., Kepert, C. J., Zhou, H. C., Yildirim, T., Zhou, W. (2010). Metal-organic frameworks with exceptionally high methane uptake: where and how is methane stored? Chemistry - A European Journal, 16(17), 5205-5214. doi:10.1002/chem.200902719en_AU
dc.identifier.govdoc1742en_AU
dc.identifier.issn0947-6539en_AU
dc.identifier.issue17en_AU
dc.identifier.journaltitleChemistry - A European Journalen_AU
dc.identifier.pagination5205-5214en_AU
dc.identifier.urihttp://dx.doi.org/10.1002/chem.200902719en_AU
dc.identifier.urihttp://apo.ansto.gov.au/dspace/handle/10238/1708en_AU
dc.identifier.volume16en_AU
dc.language.isoenen_AU
dc.publisherWiley-VCH Verlag Berlinen_AU
dc.subjectMethaneen_AU
dc.subjectNeutron diffractionen_AU
dc.subjectAdsorptionen_AU
dc.subjectStorageen_AU
dc.subjectUptakeen_AU
dc.subjectOther organic compoundsen_AU
dc.titleMetal-organic frameworks with exceptionally high methane uptake: where and how is methane stored?en_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections