A climate-isotope regression model with seasonally-varying and time-integrated relationships

dc.contributor.authorFischer, MJen_AU
dc.contributor.authorBaldini, LMen_AU
dc.date.accessioned2012-04-18T02:10:02Zen_AU
dc.date.available2012-04-18T02:10:02Zen_AU
dc.date.issued2011-12-01en_AU
dc.date.statistics2012-04-12en_AU
dc.description.abstractThis study investigates multivariable and multiscalar climate-delta(18)O relationships, through the use of statistical modeling and simulation. Three simulations, of increasing complexity, are used to generate time series of daily precipitation delta(18)O. The first simulation uses a simple local predictor (daily rainfall amount). The second simulation uses the same local predictor plus a larger-scale climate variable (a daily NAO index), and the third simulation uses the same local and non-local predictors, but with varying seasonal effect. Since these simulations all operate at the daily timescale, they can be used to investigate the climate-delta(18)O patterns that arise at daily-interannual timescales. These simulations show that (1) complex links exist between climate-delta(18)O relationships at different timescales, (2) the short-timescale relationships that underlie monthly predictor-delta(18)O relationships can be recovered using only monthly delta(18)O and daily predictor variables, (3) a comparison between the simulations and observational data can elucidate the physical processes at work. The regression models developed are then applied to a 2-year dataset of monthly precipitation delta(18)O from Dublin and compared with event-scale data from the same site, which illustrates that the methodology works, and that the third regression model explains about 55% of the variance in delta(18)O at this site. The methodology introduced here can potentially be applied to historic monthly delta(18)O data, to better understand how multiple-integrated influences at short timescales give rise to climate-delta(18)O patterns at monthly-interannual timescales. © 2011, Springer.en_AU
dc.identifier.citationFischer, M. J., Baldini, L. M., (2011). A climate-isotope regression model with seasonally-varying and time-integrated relationships. Climate Dynamics, 37(11-12), 2235-2251. doi:10.1007/s00382-011-1009-1en_AU
dc.identifier.govdoc3664en_AU
dc.identifier.issn0930-7575en_AU
dc.identifier.issue11-12en_AU
dc.identifier.journaltitleClimate Dynamicsen_AU
dc.identifier.pagination2235-2251en_AU
dc.identifier.urihttp://dx.doi.org/10.1007/s00382-011-1009-1en_AU
dc.identifier.urihttp://apo.ansto.gov.au/dspace/handle/10238/4148en_AU
dc.identifier.volume37en_AU
dc.language.isoenen_AU
dc.publisherSpringeren_AU
dc.subjectIsotopesen_AU
dc.subjectRegression analysisen_AU
dc.subjectDelta raysen_AU
dc.subjectClimatesen_AU
dc.subjectVerificationen_AU
dc.subjectScalarsen_AU
dc.titleA climate-isotope regression model with seasonally-varying and time-integrated relationshipsen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections