Cave atmosphere; a guide to calcification and a methane sink

dc.contributor.authorWaring, CLen_AU
dc.contributor.authorGriffith, DWTen_AU
dc.contributor.authorWilson, SRen_AU
dc.contributor.authorHurry, Sen_AU
dc.date.accessioned2010-09-06T00:35:44Zen_AU
dc.date.available2010-09-06T00:35:44Zen_AU
dc.date.issued2009-06-23en_AU
dc.date.statistics2009-06-23en_AU
dc.description.abstractStudies of cave environments and speleothem growth are an important step towards quantitative speleothem palaeoclimate interpretation. Net accumulation of CaCO3 (speleothem growth) requires a perturbation to Gas-Aqueous-Solid equilibrium conditions in the cave environment (Aq. chem., T, P, pCO2). The largest equilibrium change in a ventilated cave environment causing speleothem growth is fluctuating pCO2 as a response to the cave air exchange, driven by external temperature. An intense 3-week field campaign in May 2008 (winter) using an FTIR spectrometer continuously measured (5 min) trace gases (CO2, CH4, N2O) H2O and δ13CCO2. Simultaneous drip-water pH, air flow, temperature, pressure, and relative humidity was logged by sensors in the cave together with external rainfall, temperature, pressure, and relative humidity. Drip water was sampled twice daily, coinciding with CO2 maxima and minima, for dissolved inorganic carbonate DIC, δ13CDIC, dissolved organic carbonate DOC, δ13CDOC, alkalinity, anions, and cations. Further spot samples were taken for drip-water stable isotopes, 14CDIC, and 3H. Low pCO2 in the morning cave air causes rapid speleothem growth with CO2 exsolved to the cave atmosphere lowering drip-water pH. pCO2 increases to an evening maxima and slows speleothem growth before early morning T induced ventilation decreases pCO2. δ13CCO2 has an antithetic relationship with CO2, with low pCO2 morning air the highest δ13CCO2 at -8 ‰ PDB. A Keeling analysis of end-member component mixing reveals the proportion of external air drawn into the cave and CO2 produced from speleothem formation through the diurnal cycle. Methane concentration in cave air also cycles through a diurnal pattern, negatively correlated with CO2. The methane concentration ranges from normal atmospheric 1700 ppb to <200 ppb and cycles 1000 ppb in only a few hours. Methane consumption is very rapid, suggesting a biogeochemical mechanism.en_AU
dc.identifier.citationWaring, C. L., Griffith, D. W. T., Wilson, S., & Hurry, S. (2009). Cave atmosphere; a guide to calcification and a methane sink. Poster presented to the 19th Annual V.M. Goldschmidt Conference (Goldschmidt 2009) - "Challenges to Our Volatile Planet", 21st - 26th June 2009. Davos, Switzerland: Congress Centre. In Geochimica et Cosmochimica Acta, 73(13S), A1419.en_AU
dc.identifier.conferenceenddate26 June 2009en_AU
dc.identifier.conferencename19th Annual V.M. Goldschmidt Conference (Goldschmidt 2009) - 'Challenges to Our Volatile Planet'en_AU
dc.identifier.conferenceplaceDavos, Switzerlanden_AU
dc.identifier.conferencestartdate21 June 2009en_AU
dc.identifier.govdoc2621en_AU
dc.identifier.issn0016-7037en_AU
dc.identifier.issue13Sen_AU
dc.identifier.journaltitleGeochimica et Cosmochimica Actaen_AU
dc.identifier.paginationA1419en_AU
dc.identifier.urihttp://dx.doi.org/10.1016/j.gca.2009.05.027en_AU
dc.identifier.urihttp://apo.ansto.gov.au/dspace/handle/10238/2461en_AU
dc.identifier.volume73en_AU
dc.language.isoenen_AU
dc.publisherElsevier; Cambridge Publicationsen_AU
dc.subjectCavesen_AU
dc.subjectMethaneen_AU
dc.subjectTrace amountsen_AU
dc.subjectWateren_AU
dc.subjectAtmosphericsen_AU
dc.subjectGrowth factorsen_AU
dc.titleCave atmosphere; a guide to calcification and a methane sinken_AU
dc.typeConference Posteren_AU
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1419.pdf
Size:
136.36 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: