Structural evolution and stability of sol-gel biocatalysts

dc.contributor.authorRodgers, LEen_AU
dc.contributor.authorKnott, RBen_AU
dc.contributor.authorHolden, PJen_AU
dc.contributor.authorPike, KJen_AU
dc.contributor.authorHanna, JVen_AU
dc.contributor.authorFoster, LJRen_AU
dc.contributor.authorBartlett, JRen_AU
dc.date.accessioned2008-04-14T04:16:38Zen_AU
dc.date.accessioned2010-04-30T05:01:40Zen_AU
dc.date.available2008-04-14T04:16:38Zen_AU
dc.date.available2010-04-30T05:01:40Zen_AU
dc.date.issued2006-11-15en_AU
dc.date.statistics2006-11en_AU
dc.description.abstractImmobilisation strategies for catalytic enzymes are important as they allow recovery and reuse of the biocatalysts. In this work, sol-gel matrices have been used to immobilise Candida antarctica lipase B (CALB), a commonly used industrial enzyme. The sol-gel bioencapsulate is produced through fluoride-catalysed hydrolysis of mixtures of tetramethylorthosilicate (TMOS) and methyltrimethoxysilane (MTMS) in the presence of CALB, yielding materials with controlled pore sizes and surface chemistries. Sol-gel matrices prolong the catalytic life and enhance the activity of CALB, although the molecular basis for this effect has yet to be elucidated due to the limitations of analytical techniques applied to date. Small angle neutron scattering (SANS) allows such multi-component systems to be characterised through contrast matching. In the sol-gel bioencapsulate system at the contrast match point for silica, residual scattering intensity is due to the CALB and density fluctuations in the matrix. A SANS contrast variation series found the match point for the silica matrix, both with and without enzyme present, to be around 35%. The model presented here proposes a mechanism for the interaction between CALB and the surrounding sol-gel matrix, and the observed improvement in enzyme activity and matrix strength. Essentially, the inclusion of CALB modulates silicate speciation during evolution of the inorganic network, leading to associated variations in SANS contrast. The SANS protocol developed here may be applied more generally to other encapsulated enzyme systems. © 2006, Elsevier Ltd.en_AU
dc.identifier.citationRodgers, L. E., Knott, R. B., Holden, P. J., Pike, K. J., Hanna, J. V., Foster, L. J. R., & Bartlett, J. R. (2006). Structural evolution and stability of sol-gel biocatalysts. Paper presented at the Eighth International Conference on Neutron Scattering (ICNS 2005), "Neutrons for structure and dynamics - a new era", Sydney, Australia, 27 November to 2 December 2005. In Campbell, S. J., Cadogan, J. M., Furusaka, M., Hauser, N., & James, M. (Eds), Physica B: Condensed Matter, 385-386(Part 1), 508-510. doi:10.1016/j.physb.2006.05.257en_AU
dc.identifier.conferenceenddate2 December 2005en_AU
dc.identifier.conferenceenddate27 November 2005en_AU
dc.identifier.conferencenameEighth International Conference on Neutron Scattering ICNS 2005: 'Neutrons for structure and dynamics - a new eraen_AU
dc.identifier.conferenceplaceSydney, Australiaen_AU
dc.identifier.editorsCampbell, S. J., Cadogan, J. M., Furusaka, M., Hauser, N., & James, M.en_AU
dc.identifier.govdoc1097en_AU
dc.identifier.issn0921-4526en_AU
dc.identifier.issuePart 1en_AU
dc.identifier.journaltitlePhysica B: Condensed Matteren_AU
dc.identifier.pagination508-510en_AU
dc.identifier.urihttp://dx.doi.org/10.1016/j.physb.2006.05.257en_AU
dc.identifier.urihttp://apo.ansto.gov.au/dspace/handle/10238/1068en_AU
dc.identifier.volume385en_AU
dc.language.isoenen_AU
dc.publisherElsevieren_AU
dc.subjectEvolutionen_AU
dc.subjectSol-gel processen_AU
dc.subjectEnzymesen_AU
dc.subjectMatricesen_AU
dc.subjectSmall angle scatteringen_AU
dc.subjectSilicaen_AU
dc.titleStructural evolution and stability of sol-gel biocatalystsen_AU
dc.typeConference Paperen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.79 KB
Format:
Plain Text
Description: