Anisotropic collision probabilities for one dimensional geometries

dc.contributor.authorDoherty, Gen_AU
dc.date.accessioned2007-11-22T04:21:50Zen_AU
dc.date.accessioned2010-04-30T04:34:22Zen_AU
dc.date.available2007-11-22T04:21:50Zen_AU
dc.date.available2010-04-30T04:34:22Zen_AU
dc.date.issued1971-07en_AU
dc.description.abstractThe equations for Po and P1 collision properties in slab, spherical and cylindrical geometries are presented. A method of solution of the resulting multigroup neutron flux equation is discussed. The extension of Sn codes to incorporate anisotropic scattering is straightforward and the time penalty incurred in the calculation probability method is difficult and doubling the length of the flux vector increases the solution time dramatically. It is therefore concluded that the Sn method will be superior for most anisotropic calculations.en_AU
dc.identifier.citationDoherty, G. (1971). Anisotropic collision probabilities for one dimensional geometries (AAEC/E222). Lucas Heights, NSW: Australian Atomic Energy Commission.en_AU
dc.identifier.govdoc452en_AU
dc.identifier.isbn0642994374en_AU
dc.identifier.otherAAEC-E-222en_AU
dc.identifier.urihttp://apo.ansto.gov.au/dspace/handle/10238/409en_AU
dc.language.isoen_auen_AU
dc.publisherAustralian Atomic Energy Commissionen_AU
dc.subjectCollision integralsen_AU
dc.subjectCollision probability methoden_AU
dc.subjectGeometryen_AU
dc.subjectEquationsen_AU
dc.titleAnisotropic collision probabilities for one dimensional geometriesen_AU
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
AAEC-E-222.pdf
Size:
1.35 MB
Format:
Adobe Portable Document Format
Description: