Anisotropic collision probabilities for one dimensional geometries
dc.contributor.author | Doherty, G | en_AU |
dc.date.accessioned | 2007-11-22T04:21:50Z | en_AU |
dc.date.accessioned | 2010-04-30T04:34:22Z | en_AU |
dc.date.available | 2007-11-22T04:21:50Z | en_AU |
dc.date.available | 2010-04-30T04:34:22Z | en_AU |
dc.date.issued | 1971-07 | en_AU |
dc.description.abstract | The equations for Po and P1 collision properties in slab, spherical and cylindrical geometries are presented. A method of solution of the resulting multigroup neutron flux equation is discussed. The extension of Sn codes to incorporate anisotropic scattering is straightforward and the time penalty incurred in the calculation probability method is difficult and doubling the length of the flux vector increases the solution time dramatically. It is therefore concluded that the Sn method will be superior for most anisotropic calculations. | en_AU |
dc.identifier.citation | Doherty, G. (1971). Anisotropic collision probabilities for one dimensional geometries (AAEC/E222). Lucas Heights, NSW: Australian Atomic Energy Commission. | en_AU |
dc.identifier.govdoc | 452 | en_AU |
dc.identifier.isbn | 0642994374 | en_AU |
dc.identifier.other | AAEC-E-222 | en_AU |
dc.identifier.uri | http://apo.ansto.gov.au/dspace/handle/10238/409 | en_AU |
dc.language.iso | en_au | en_AU |
dc.publisher | Australian Atomic Energy Commission | en_AU |
dc.subject | Collision integrals | en_AU |
dc.subject | Collision probability method | en_AU |
dc.subject | Geometry | en_AU |
dc.subject | Equations | en_AU |
dc.title | Anisotropic collision probabilities for one dimensional geometries | en_AU |
Files
Original bundle
1 - 1 of 1