Solving key challenges in battery research using in situ synchrotron and neutron techniques

dc.contributor.authorGu, QFen_AU
dc.contributor.authorKimpton, JAen_AU
dc.contributor.authorBrand, HEAen_AU
dc.contributor.authorWang, ZYen_AU
dc.contributor.authorChou, SLen_AU
dc.date.accessioned2021-12-06T19:51:29Zen_AU
dc.date.available2021-12-06T19:51:29Zen_AU
dc.date.issued2017-03-17en_AU
dc.date.statistics2021-11-05en_AU
dc.description.abstractUnderstanding the electrochemical reaction mechanisms and kinetics in batteries is the key challenge for developing breakthroughs with new or existing electrode materials. X-rays and neutrons are excellent probes for studying atomic structure changes and phase evolution in battery materials during charge and discharge. Synchrotron X-ray powder diffraction (SXPD), with its high angular resolution and beam intensity, allows fast scattering and diffraction data collection to record crystalline structure changes that occur on short time-scales. Neutron powder diffraction (NPD) provides complementary information that is sensitive to different structural details during charge/discharge. More recently X-ray absorption spectroscopy (XAS) has been used to identify the oxidation states of transition metal ions present in new cathode compositions at different stages of battery cycling. Using in-house designed battery cells, electrodes or other cell components can be subjected to conditions designed to mimic their real operating conditions. It is preferable to investigate battery materials in operation to identify any critical intermediate stages during charge/discharge rather than using ex situ methods to analyse dismantled batteries. Examples and combinations of SXPD, XAS, and NPD measurements, which have been used to investigate lithium ion batteries and sodium ion batteries, are described and reviewed in this contribution. © 2017 Wiley-VCH Verlag GmbH & Coen_AU
dc.description.sponsorshipSome of this research was performed at the PD beamline, Australian Synchrotron (AS). The authors thank the ongoing research support from AS, ANSTO. Q.F.G. acknowledges Science and Technology Committee of Shanghai (Grant No. 16520721800).en_AU
dc.identifier.articlenumber1602831en_AU
dc.identifier.citationGu, Q., Kimpton, J. A., Brand, H. E. A., Wang, Z. & Chou, S. (2017). Solving key challenges in battery research using in situ synchrotron and neutron techniques. Advanced Energy Materials, 7(24), 1602831. doi:10.1002/aenm.201602831en_AU
dc.identifier.issn1614-6832en_AU
dc.identifier.issue24en_AU
dc.identifier.journaltitleAdvanced Energy Materialsen_AU
dc.identifier.urihttps://doi.org/10.1002/aenm.201602831en_AU
dc.identifier.urihttps://apo.ansto.gov.au/dspace/handle/10238/12360en_AU
dc.identifier.volume7en_AU
dc.language.isoenen_AU
dc.publisherJohn Wiley & Sons, Incen_AU
dc.subjectLithium ion batteriesen_AU
dc.subjectElectric batteriesen_AU
dc.subjectCathodesen_AU
dc.subjectElectrodesen_AU
dc.subjectElectric dischargesen_AU
dc.subjectLithium alloysen_AU
dc.subjectLithium compoundsen_AU
dc.subjectReaction kineticsen_AU
dc.subjectNeutronsen_AU
dc.subjectX-ray diffractionen_AU
dc.subjectX-ray spectroscopyen_AU
dc.titleSolving key challenges in battery research using in situ synchrotron and neutron techniquesen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections