Increased phase coherence length in a porous topological insulator
dc.contributor.author | Nguyen, A | en_AU |
dc.contributor.author | Akhgar, G | en_AU |
dc.contributor.author | Cortie, DL | en_AU |
dc.contributor.author | Bake, A | en_AU |
dc.contributor.author | Pastuovic, Z | en_AU |
dc.contributor.author | Zhao, W | en_AU |
dc.contributor.author | Liu, C | en_AU |
dc.contributor.author | Chen, YH | en_AU |
dc.contributor.author | Suzuki, K | en_AU |
dc.contributor.author | Fuhrer, MS | en_AU |
dc.contributor.author | Culcer, D | en_AU |
dc.contributor.author | Hamilton, AR | en_AU |
dc.contributor.author | Edmonds, MT | en_AU |
dc.contributor.author | Karel, J | en_AU |
dc.date.accessioned | 2025-01-09T23:32:33Z | en_AU |
dc.date.available | 2025-01-09T23:32:33Z | en_AU |
dc.date.issued | 2023-06-15 | en_AU |
dc.date.statistics | 2024-05-28 | en_AU |
dc.description.abstract | The surface area of Bi2Te3 thin films was increased by introducing nanoscale porosity. Temperature dependent resistivity and magnetotransport measurements were conducted both on as-grown and porous samples (23 and 70 nm). The longitudinal resistivity of the porous samples became more metallic, indicating the increased surface area resulted in transport that was more surfacelike. Weak antilocalization was present in all samples, and remarkably the phase coherence length doubled in the porous samples. This increase is likely due to the large Fermi velocity of the Dirac surface states. Our results show that the introduction of nanoporosity does not destroy the topological surface states but rather enhances them, making these nanostructured materials promising for low energy electronics, spintronics and thermoelectrics. ©2023 American Physical Society | en_AU |
dc.description.sponsorship | A.N., G.A., J.K., M.T.E., D.L.C., D.C., A.R.H., and M.S.F. acknowledge the funding support from the Australian Research Council Centre of Excellence in Future Low Energy Electronics Technologies (CE170100039). J.K. acknowledges the support from the Australian Research Council Discovery Projects (DP200102477 and DP220103783). This work was performed in part at the Melbourne Centre for Nanofabrication (MCN) in the Victorian Node of the Australian National Fabrication Facility (ANFF). The ion irradiation of this research was undertaken in Australian Neutron Science and Technology Organisation (ANSTO). We would like to acknowledge Professor S. Prawer and use of his laser cutter facility at the University of Melbourne in making the shadow masks. | en_AU |
dc.identifier.articlenumber | 064202 | en_AU |
dc.identifier.citation | Nguyen, A., Akhgar, G., Cortie, D. L., Bake, A., Pastuovic, Z., Zhao, W., Liu, C., Chen, Y.-H., Suzuki, K., Fuhrer, M. S., Culcer, D., Hamilton, A. R., Edmonds, M. T., & Karel, J. (2023). Increased phase coherence length in a porous topological insulator. Physical Review Materials, 7(6), 064202. doi:10.1103/PhysRevMaterials.7.064202 | en_AU |
dc.identifier.issn | 2476-0455 | en_AU |
dc.identifier.issn | 2475-9953 | en_AU |
dc.identifier.issue | 6 | en_AU |
dc.identifier.journaltitle | Physical Review Materials | en_AU |
dc.identifier.pagination | 064202- | en_AU |
dc.identifier.uri | https://doi.org/10.1103/physrevmaterials.7.064202 | en_AU |
dc.identifier.uri | https://apo.ansto.gov.au/handle/10238/15884 | en_AU |
dc.identifier.volume | 7 | en_AU |
dc.language | English | en_AU |
dc.language.iso | en | en_AU |
dc.publisher | American Physical Society (APS) | en_AU |
dc.subject | Tellurium | en_AU |
dc.subject | Bismuth | en_AU |
dc.subject | Thin Films | en_AU |
dc.subject | Temperature dependence | en_AU |
dc.subject | Thermoelectric materials | en_AU |
dc.subject | Electrical insulators | en_AU |
dc.subject | Electronic structure | en_AU |
dc.subject | Spin | en_AU |
dc.subject | Coupling | en_AU |
dc.title | Increased phase coherence length in a porous topological insulator | en_AU |
dc.type | Journal Article | en_AU |
Files
License bundle
1 - 1 of 1