Increased phase coherence length in a porous topological insulator

dc.contributor.authorNguyen, Aen_AU
dc.contributor.authorAkhgar, Gen_AU
dc.contributor.authorCortie, DLen_AU
dc.contributor.authorBake, Aen_AU
dc.contributor.authorPastuovic, Zen_AU
dc.contributor.authorZhao, Wen_AU
dc.contributor.authorLiu, Cen_AU
dc.contributor.authorChen, YHen_AU
dc.contributor.authorSuzuki, Ken_AU
dc.contributor.authorFuhrer, MSen_AU
dc.contributor.authorCulcer, Den_AU
dc.contributor.authorHamilton, ARen_AU
dc.contributor.authorEdmonds, MTen_AU
dc.contributor.authorKarel, Jen_AU
dc.date.accessioned2025-01-09T23:32:33Zen_AU
dc.date.available2025-01-09T23:32:33Zen_AU
dc.date.issued2023-06-15en_AU
dc.date.statistics2024-05-28en_AU
dc.description.abstractThe surface area of Bi2Te3 thin films was increased by introducing nanoscale porosity. Temperature dependent resistivity and magnetotransport measurements were conducted both on as-grown and porous samples (23 and 70 nm). The longitudinal resistivity of the porous samples became more metallic, indicating the increased surface area resulted in transport that was more surfacelike. Weak antilocalization was present in all samples, and remarkably the phase coherence length doubled in the porous samples. This increase is likely due to the large Fermi velocity of the Dirac surface states. Our results show that the introduction of nanoporosity does not destroy the topological surface states but rather enhances them, making these nanostructured materials promising for low energy electronics, spintronics and thermoelectrics. ©2023 American Physical Societyen_AU
dc.description.sponsorshipA.N., G.A., J.K., M.T.E., D.L.C., D.C., A.R.H., and M.S.F. acknowledge the funding support from the Australian Research Council Centre of Excellence in Future Low Energy Electronics Technologies (CE170100039). J.K. acknowledges the support from the Australian Research Council Discovery Projects (DP200102477 and DP220103783). This work was performed in part at the Melbourne Centre for Nanofabrication (MCN) in the Victorian Node of the Australian National Fabrication Facility (ANFF). The ion irradiation of this research was undertaken in Australian Neutron Science and Technology Organisation (ANSTO). We would like to acknowledge Professor S. Prawer and use of his laser cutter facility at the University of Melbourne in making the shadow masks.en_AU
dc.identifier.articlenumber064202en_AU
dc.identifier.citationNguyen, A., Akhgar, G., Cortie, D. L., Bake, A., Pastuovic, Z., Zhao, W., Liu, C., Chen, Y.-H., Suzuki, K., Fuhrer, M. S., Culcer, D., Hamilton, A. R., Edmonds, M. T., & Karel, J. (2023). Increased phase coherence length in a porous topological insulator. Physical Review Materials, 7(6), 064202. doi:10.1103/PhysRevMaterials.7.064202en_AU
dc.identifier.issn2476-0455en_AU
dc.identifier.issn2475-9953en_AU
dc.identifier.issue6en_AU
dc.identifier.journaltitlePhysical Review Materialsen_AU
dc.identifier.pagination064202-en_AU
dc.identifier.urihttps://doi.org/10.1103/physrevmaterials.7.064202en_AU
dc.identifier.urihttps://apo.ansto.gov.au/handle/10238/15884en_AU
dc.identifier.volume7en_AU
dc.languageEnglishen_AU
dc.language.isoenen_AU
dc.publisherAmerican Physical Society (APS)en_AU
dc.subjectTelluriumen_AU
dc.subjectBismuthen_AU
dc.subjectThin Filmsen_AU
dc.subjectTemperature dependenceen_AU
dc.subjectThermoelectric materialsen_AU
dc.subjectElectrical insulatorsen_AU
dc.subjectElectronic structureen_AU
dc.subjectSpinen_AU
dc.subjectCouplingen_AU
dc.titleIncreased phase coherence length in a porous topological insulatoren_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.66 KB
Format:
Plain Text
Description:
Collections