Water-mediated super-correlated proton-assisted transport mode for solid-state K−O2 batteries
dc.contributor.author | Kong, DC | en_AU |
dc.contributor.author | Avdeev, M | en_AU |
dc.contributor.author | Song, LN | en_AU |
dc.contributor.author | Zhen, LJ | en_AU |
dc.contributor.author | Wang, XX | en_AU |
dc.contributor.author | Xu, JJ | en_AU |
dc.date.accessioned | 2024-09-10T06:00:07Z | en_AU |
dc.date.available | 2024-09-10T06:00:07Z | en_AU |
dc.date.issued | 2024-09 | en_AU |
dc.date.statistics | 2024-08-23 | en_AU |
dc.description.abstract | A comprehensive understanding of the behavior nature of fast ions at the atomic level is essential for the development of advanced solid-state ionic conductors. The inadequate inter-ion correlation effects of current ion transport models lead to a conductivity bottleneck in designing conductors. Herein, based on water-mediated proton-assisted ion transport, a novel transport mode with simultaneous anion-cation and inter-cation coupling is designed, enabling the K-ions of the modeled solid-state ionic conductor K2Fe4O7 crystals to achieve an ultra-high conductivity of 7.6 × 10–2 S cm–1, an enhancement of two orders of magnitude. The principle of the accelerated K-ion diffusion through the rotation and vibration of water molecules around the framework oxygen atom is elaborated, and the coupling correlation between proton and K-ion transport is confirmed using in-situ impedance spectroscopy under labeled isotopes. The application of this mechanism enabled the fabricated K−O2 solid-state battery exhibit an ultra-low overpotential (0.1 V) and excellent rate performance. Further, the mechanism is also applicable for Li and Na-ion conductors, providing significant theoretical guidance for breaking existing universal design rules and for the development for faster ionic conductors. © 2024 Elsevier B.V. | en_AU |
dc.description.sponsorship | This work was financially supported by the National Natural Science Foundation of China (Grant 21835002, 21621001), the 111 Project (B17020), Changchun City Science and Technology Development Program (Grant No. 21ZY16), and the Fundamental Research Funds for the Central Universities. | en_AU |
dc.identifier.articlenumber | 103699 | en_AU |
dc.identifier.citation | Kong, D.-C., Avdeev, M., Song, L.-N., Zheng, L.-J., Wang, X.-X., & Xu, J.-J. (2024). Water-mediated super-correlated proton-assisted transport mode for solid-state K−O2 batteries. Energy Storage Materials, 72, 103699. doi:10.1016/j.ensm.2024.103699 | en_AU |
dc.identifier.isbn | 2405-8297 | en_AU |
dc.identifier.journaltitle | Energy Storage Materials | en_AU |
dc.identifier.uri | https://apo.ansto.gov.au/handle/10238/15678 | en_AU |
dc.identifier.volume | 72 | en_AU |
dc.language.iso | en | en_AU |
dc.publisher | Elsevier | en_AU |
dc.relation.uri | https://doi.org/10.1016/j.ensm.2024.103699 | en_AU |
dc.subject | Ionic conductivity | en_AU |
dc.subject | Diffusion | en_AU |
dc.subject | Protons | en_AU |
dc.subject | Water | en_AU |
dc.subject | Electric batteries | en_AU |
dc.subject | Ions | en_AU |
dc.subject | Cations | en_AU |
dc.subject | Conductor devices | en_AU |
dc.subject | Spectroscopy | en_AU |
dc.title | Water-mediated super-correlated proton-assisted transport mode for solid-state K−O2 batteries | en_AU |
dc.type | Journal Article | en_AU |
Files
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 1.63 KB
- Format:
- Item-specific license agreed upon to submission
- Description: