Emerging biological archives can reveal ecological and climatic change in Antarctica
dc.contributor.author | Strugnell, JM | en_AU |
dc.contributor.author | McGregor, HV | en_AU |
dc.contributor.author | Wilson, NG | en_AU |
dc.contributor.author | Meredith, KT | en_AU |
dc.contributor.author | Chown, SL | en_AU |
dc.contributor.author | Lau, SCY | en_AU |
dc.contributor.author | Robinson, SA | en_AU |
dc.contributor.author | Saunders, KM | en_AU |
dc.date.accessioned | 2025-01-09T22:04:30Z | en_AU |
dc.date.available | 2025-01-09T22:04:30Z | en_AU |
dc.date.issued | 2022-07-28 | en_AU |
dc.date.statistics | 2024-06-27 | en_AU |
dc.description.abstract | Anthropogenic climate change is causing observable changes in Antarctica and the Southern Ocean including increased air and ocean temperatures, glacial melt leading to sea‐level rise and a reduction in salinity, and changes to freshwater water availability on land. These changes impact local Antarctic ecosystems and the Earth's climate system. The Antarctic has experienced significant past environmental change, including cycles of glaciation over the Quaternary Period (the past ~2.6 million years). Understanding Antarctica's paleoecosystems, and the corresponding paleoenvironments and climates that have shaped them, provides insight into present day ecosystem change, and importantly, helps constrain model projections of future change. Biological archives such as extant moss beds and peat profiles, biological proxies in lake and marine sediments, vertebrate animal colonies, and extant terrestrial and benthic marine invertebrates, complement other Antarctic paleoclimate archives by recording the nature and rate of past ecological change, the paleoenvironmental drivers of that change, and constrain current ecosystem and climate models. These archives provide invaluable information about terrestrial ice‐free areas, a key location for Antarctic biodiversity, and the continental margin which is important for understanding ice sheet dynamics. Recent significant advances in analytical techniques (e.g., genomics, biogeochemical analyses) have led to new applications and greater power in elucidating the environmental records contained within biological archives. Paleoecological and paleoclimate discoveries derived from biological archives, and integration with existing data from other paleoclimate data sources, will significantly expand our understanding of past, present, and future ecological change, alongside climate change, in a unique, globally significant region. © © 2022 The Authors. Global Change Biology published by John Wiley & Sons Ltd. Open Access. | en_AU |
dc.description.sponsorship | This work was supported by the Australian Research Council (ARC) Special Research Initiative in Excellence in Antarctic Science (SRIEAS) Grant SR200100005 Securing Antarctica's Environmental Future. We acknowledge input from Richard Jones on Figure 2 and thank Daniel A. Becker from Invisible Ink Studio for creating Figure 2. We thank Andrew Clarke and an anonymous reviewer for their suggestions, which improved this manuscript. Open access publishing facilitated by James Cook University, as part of the Wiley - James Cook University agreement via the Council of Australian University Librarians. | en_AU |
dc.format.medium | Print-Electronic | en_AU |
dc.identifier.citation | Strugnell, J. M., McGregor, H. V., Wilson, N. G., Meredith, K. T., Chown, S. L., Lau, S. C. Y., Robinson, S. A., & Saunders, K. M. (2022). Emerging biological archives can reveal ecological and climatic change in Antarctica. Global Change Biology, 28(22), 6483-6508. doi:10.1111/gcb.16356 | en_AU |
dc.identifier.issn | 1354-1013 | en_AU |
dc.identifier.issn | 1365-2486 | en_AU |
dc.identifier.issue | 22 | en_AU |
dc.identifier.journaltitle | Global Change Biology | en_AU |
dc.identifier.pagination | 6483-6508 | en_AU |
dc.identifier.uri | https://doi.org/10.1111/gcb.16356 | en_AU |
dc.identifier.uri | https://apo.ansto.gov.au/handle/10238/15879 | en_AU |
dc.identifier.volume | 28 | en_AU |
dc.language | English | en_AU |
dc.language.iso | en | en_AU |
dc.publisher | Wiley | en_AU |
dc.subject | Antarctica | en_AU |
dc.subject | Ecological balance | en_AU |
dc.subject | Climatic change | en_AU |
dc.subject | Temperature monitoring | en_AU |
dc.subject | Glaciers | en_AU |
dc.subject | Salinity | en_AU |
dc.subject | Sea level | en_AU |
dc.subject | Ecosystems | en_AU |
dc.subject | Climate models | en_AU |
dc.subject | Biogeochemistry | en_AU |
dc.title | Emerging biological archives can reveal ecological and climatic change in Antarctica | en_AU |
dc.type | Journal Article | en_AU |
dcterms.dateAccepted | 2022-06-27 | en_AU |
Files
Original bundle
1 - 2 of 2
Loading...
- Name:
- Emerging biological archives can reveal ecological and climatic change in Antarctica.pdf
- Size:
- 7.17 MB
- Format:
- Adobe Portable Document Format
- Description:
- Published version
Loading...
- Name:
- gcb16356-sup-0001-datas1.docx
- Size:
- 684.19 KB
- Format:
- Microsoft Word XML
- Description:
License bundle
1 - 1 of 1