Scaling behaviour of the skyrmion phases of Cu2OSeO3 single crystals from small angle neutron scattering

dc.contributor.authorSauceda Flores, JAen_AU
dc.contributor.authorJorge, Aen_AU
dc.contributor.authorRov, Ren_AU
dc.contributor.authorPervez, MFen_AU
dc.contributor.authorSpasovski, Men_AU
dc.contributor.authorO’Brien, Jen_AU
dc.contributor.authorVella, Jen_AU
dc.contributor.authorSeidel, Jen_AU
dc.contributor.authorYick, Sen_AU
dc.contributor.authorGilbert, EPen_AU
dc.contributor.authorTretiakov, OAen_AU
dc.contributor.authorSoehnel, Ten_AU
dc.contributor.authorUlrich, Cen_AU
dc.date.accessioned2023-05-05T04:47:38Zen_AU
dc.date.available2023-05-05T04:47:38Zen_AU
dc.date.issued2020-11-11en_AU
dc.date.statistics2023-05-04en_AU
dc.description.abstractA skyrmion is a topological stable particle-like object comparable to a spin vortex at the nanometre scale. It consists of an about 50 nm large spin rotation and its spin winding number is quantised. Skyrmions emerge in chiral crystals as the result of competing symmetric exchange and asymmetric Dzyaloshinskii-Moriya (DM) interactions and typically form two dimensional hexagonal lattices perpendicular to an applied magnetic field. Its dynamics has links to flux line vortices as in high-temperature superconductors [1-2]. Cu2OSeO3 is a unique case of a multiferroic material where the skyrmion dynamics could be controlled through the application of an external electric field. The direct control of the skyrmion dynamics through a non-dissipative method would offer technological benefits applicable in energy-efficient data storage and data processing devices or for testing fundamental theories also related to the Higgs Boson whose theoretical description has similarities to skyrmions [3]. The technological applications crucially depend on the stability conditions of the skyrmion phase up to room temperature. While some materials host skyrmion lattices above room temperature [3], Cu2OSeO3 is the only insulating skyrmion material discovered so far, which orders magnetically below 58 K. It is interesting to note that the appearance of two different skyrmion phases have been reported along the temperature and magnetic field phase diagram of Cu2OSeO3 when the sample is aligned with its main crystallographic axes parallel to the incoming neutron beam and performing Zero Field Cooling (ZFC) or Field Cooling (FC) across the high-temperature skyrmion phase. However, the stabilisation processes of these two phases and their thermodynamic connection are still under debate [4-6]. We have used small angle neutron scattering and Lorentz transmission electron microscopy [7] to study the scaling behaviour of helical phase and the magnetic skyrmion lattices, i.e. the systematic change of their distances in single crystals of Cu2OSeO3 in order to gain insight on the balance between the different competing magnetic exchange interactions. Therefore, we have examined the field, temperature and sample alignment dependence of the scaling behaviour of skyrmions as an order parameter for the emergence of the two aforementioned skyrmion phases. The obtained data provide valuable information on the formation mechanism of the skyrmions and their stability range. This is an important step towards the understanding of the manipulation of skyrmions, which is required for technological applications. © The Authorsen_AU
dc.identifier.citationSauceda Flores, J. A., Rov, R., Pervez, M. F., Spasovski, M., O’Brien, J., Vella, J., Seidel, J., Yick, S., Gilbert, E., Tretiakov, O., Sohnel, T., & Ulrich, C. (2020). Scaling behaviour of the skyrmion phases of Cu2OSeO3 single crystals from small angle neutron scattering. Poster presented to the ANBUG-AINSE Neutron Scattering Symposium, AANSS 2020, Virtual Meeting, 11th - 13th November 2020, (pp. 109). Retrieved from: https://events01.synchrotron.org.au/event/125/attachments/725/1149/AANSS_Abstract_Booklet_Complete_-_1_Page_Reduced.pdfen_AU
dc.identifier.conferenceenddate13 November 2020en_AU
dc.identifier.conferencenameANBUG-AINSE Neutron Scattering Symposium, AANSS 2020en_AU
dc.identifier.conferenceplaceVirtual Meetingen_AU
dc.identifier.conferencestartdate11 November 2020en_AU
dc.identifier.pagination109en_AU
dc.identifier.urihttps://events01.synchrotron.org.au/event/125/contributions/3783/contribution.pdfen_AU
dc.identifier.urihttps://apo.ansto.gov.au/dspace/handle/10238/15022en_AU
dc.language.isoenen_AU
dc.publisherAustralian Institute of Nuclear Science and Engineering (AINSE)en_AU
dc.subjectSkyrme potentialen_AU
dc.subjectSpinen_AU
dc.subjectRotationen_AU
dc.subjectCrystalsen_AU
dc.subjectCrystallographyen_AU
dc.subjectNeutronsen_AU
dc.subjectHexagonal latticesen_AU
dc.subjectMonocrystalsen_AU
dc.subjectElectron microscopyen_AU
dc.subjectSmall angle scatteringen_AU
dc.titleScaling behaviour of the skyrmion phases of Cu2OSeO3 single crystals from small angle neutron scatteringen_AU
dc.typeConference Posteren_AU
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
contribution (57).pdf
Size:
45.4 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description: