Neutron sources for boron neutron therapy

dc.contributor.authorHarrington, BVen_AU
dc.contributor.authorStorr, GJen_AU
dc.contributor.authorAllen, BJen_AU
dc.contributor.authorMeriaty, Hen_AU
dc.contributor.authorGodfrey, RMen_AU
dc.date.accessioned2025-11-24T02:07:12Zen_AU
dc.date.available2025-11-24T02:07:12Zen_AU
dc.date.issued1991-10-02en_AU
dc.date.statistics2025-11-13en_AU
dc.descriptionPhysical copy held by ANSTO Library at DDC: 571.45/15en_AU
dc.description.abstractCurrently only thermal neutron capture therapy is practiced in Japan, where reactors at Kyota University Research reactor Institute and Japanese Atomic Energy Research Institute provide limited access for the intra-operative treatment of high grade brain tumours and cutaneous melanoma. Epithermal beams are available at Brookhaven National Laboratory and Massachusetts Institute of Technology in the USA and installation is nearing comp l et ion at the JRC Reactor at Petten, The Netherlands. Clinical trials with epi thermal beams are expected to begin in 1992. In Australia, two reactors are available for NCT. Thermal NCT is carried out on small rodents in Moata, the 100k W Argon naut reactor. A thermal patient NCT facility could be installed at HIFAR, a 10 MW reactor of the DIDO class. However, clinicians would prefer that an epi thermal beam be available for the treatment of deep-seated tumours. Our design considerations to date indicate that a therapeutic epi thermal beam from the HIFAR IOH facility is feasible and further calculations and experiments are underway to confirm this position. We estimate that an epithermal neutron flux of 0.5 109n cm-2-1s will be available. On this basis, the outpatient treatment schedule would be 5 dose fractions, with bilateral exposures of 20 min each, for whole brain treatment for high grade brain tumours. Measurements at the IOH beam hole with the existing a 2 cm square collimator indicate a thermal flux of 1.0 E09, a useful epithermal flux of 0.3 E09 and gamma dose rate of 70 Gy/h. By maximising the possible solid angle at the core, using an Al spectrum shifter and liquid argon gamma absorber, and reactor power of 15 MW, the desired epi thermal flux should be achievable. The liquid argon filter is critical for the reduction in gamma ray dose to acceptable levels while still transmitting the epi thermal neutrons.en_AU
dc.identifier.booktitle13th AINSE Radiation Biology Conference, 2-4 October 1991, Lucas Heights - AINSE Theatre : conference handbook (programme, abstracts and general information)en_AU
dc.identifier.citationHarrington, B. V., Storr, G., Allen, B. J., Meriaty, H., & Godfrey, R. (1991). Neutron sources for boron neutron therapy. Presentation to the 13th AINSE Radiation Biology Conference, 2-4 October 1991, Lucas Heights - AINSE Theatre : conference handbook (programme, abstracts and general information), (pp. 50). Lucas Heights, New South Wales : AINSE.en_AU
dc.identifier.conferenceenddate1991-10-04en_AU
dc.identifier.conferencename13th AINSE Radiation Biology Conferenceen_AU
dc.identifier.conferenceplaceLucas Heights, New South Walesen_AU
dc.identifier.conferencestartdate1991-10-02en_AU
dc.identifier.pagination50en_AU
dc.identifier.placeofpublicationLucas Heights, New South Walesen_AU
dc.identifier.urihttps://apo.ansto.gov.au/handle/10238/16736en_AU
dc.language.isoenen_AU
dc.publisherAINSEen_AU
dc.subjectAustraliaen_AU
dc.subjectExperimental dataen_AU
dc.subjectHIFAR Reactoren_AU
dc.subjectNeutron capture therapyen_AU
dc.subjectNeutron fluxen_AU
dc.subjectNeutron sourcesen_AU
dc.subjectThermal neutronsen_AU
dc.subjectTherapyen_AU
dc.subjectClinical trialsen_AU
dc.titleNeutron sources for boron neutron therapyen_AU
dc.typeConference Abstracten_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description: