Mixed metal–antimony oxide nanocomposites: low pH water oxidation electrocatalysts with outstanding durability at ambient and elevated temperatures

dc.contributor.authorLuke, Sen_AU
dc.contributor.authorChatti, Men_AU
dc.contributor.authorYadav, Aen_AU
dc.contributor.authorKerr, BVen_AU
dc.contributor.authorKangsabanik, Jen_AU
dc.contributor.authorWilliams, Ten_AU
dc.contributor.authorCherepanov, PVen_AU
dc.contributor.authorJohannessen, Ben_AU
dc.contributor.authorTanksale, Aen_AU
dc.contributor.authorMacFarlane, DRen_AU
dc.contributor.authorHocking, RKen_AU
dc.contributor.authorAlam, Aen_AU
dc.contributor.authorYella, Aen_AU
dc.contributor.authorSimonov, ANen_AU
dc.date.accessioned2025-03-06T00:17:13Zen_AU
dc.date.available2025-03-06T00:17:13Zen_AU
dc.date.issued2021-11-16en_AU
dc.date.statistics2025-02-19en_AU
dc.description.abstractProton-exchange membrane water electrolysers provide many advantages for the energy-efficient production of H2, but the current technology relies on high loadings of expensive iridium at the anodes, which are often unstable in operation. To address this, the present work scrutinises the properties of antimony–metal (Co, Mn, Ni, Fe, Ru) oxides synthesised as flat thin film electrodes by a solution-based method for water electrooxidation in 0.5 M H2SO4. Among the noble-metal-free catalysts, cobalt–antimony and manganese–antimony oxides demonstrate robust performance under ambient conditions, but slowly lose activity at elevated temperatures. A distinctive feature of the ruthenium–antimony system is its outstanding stability demonstrated herein through up to 8 day-long tests at 80 ± 1 °C, during which the reaction rate of 10 mA cm−2 was maintained at a stable overpotential of 0.34 ± 0.01 V. The S-number for this catalyst is on par with those for the high-performance benchmark Ir-based systems. Density functional theory analysis and detailed physical characterisation reveal that this high stability is supported by the enhanced hybridisation of the oxygen p- and metal d-orbitals induced by antimony and can arise from two distinct structural scenarios: either formation of an antimonate phase, or nanoscale intermixing of metal and antimony oxide crystallites. © Royal Society of Chemistry 2025.en_AU
dc.description.sponsorshipDifferent parts of this work were undertaken at the XAS beamline of the Australian Synchrotron, Monash Centre for Electron Microscopy (partially funded through ARC LIEF project LE 110100223), Monash X-ray platform, Indian National Centre for Photovoltaic Research and Education (NCPRE), Sophisticated Analytical Instrument Facility (SAIF), Central Surface Analytical Facility of IIT Bombay, and spacetime2 cluster at IIT Bombay; the authors are highly grateful for being provided with access to these facilities and resources. The financial support of this work by the Australian Research Council (Centre of Excellence for Electromaterials Science CE140100012; Future Fellowship to ANS FT200100317), the Australian Renewable Energy Agency (“Renewable Hydrogen for Export” project 2018/RND008 AS008), MNRE Government of India (NCPRE-Phase II, IIT Bombay to AA and A. Yella), Early Career Research Award, Science and Engineering Research Board, Government of India (ECR/2016/000550 to A. Yella), and IITB-Monash Academy (PhD scholarship to SL) is gratefully acknowledged. The authors also sincerely thank Dr T. Gengenbach (CSIRO, Australia) for guidance in the interpretation of the XPS data and Mr H. Takur (IIT Bombay) for assistance with the collection of some of the XRD data.en_AU
dc.identifier.citationLuke, S., Chatti, M., Yadav, A., Kerr, B. V., Kangsabanik, J., Williams, T., Cherepanov, P. V., Johannessen, B., Tanksale, A., MacFarlane, D. R., Hocking, R. K., Alam, A., Yella, A., & Simonov, A. N. (2021). Mixed metal–antimony oxide nanocomposites: low pH water oxidation electrocatalysts with outstanding durability at ambient and elevated temperatures. Journal of Materials Chemistry A, 9(48), 27468-27484. doi:10.1039/D1TA07293Een_AU
dc.identifier.issn2050-7488en_AU
dc.identifier.issn2050-7496en_AU
dc.identifier.issue48en_AU
dc.identifier.journaltitleJournal of Materials Chemistry Aen_AU
dc.identifier.pagination27468-27484en_AU
dc.identifier.urihttps://doi.org/10.1039/d1ta07293een_AU
dc.identifier.urihttps://apo.ansto.gov.au/handle/10238/16015en_AU
dc.identifier.volume9en_AU
dc.languageEnglishen_AU
dc.language.isoenen_AU
dc.publisherRoyal Society of Chemistryen_AU
dc.subjectMetalsen_AU
dc.subjectOxidesen_AU
dc.subjectNanocompositesen_AU
dc.subjectpH Valueen_AU
dc.subjectWateren_AU
dc.subjectOxidationen_AU
dc.subjectElectrocatalystsen_AU
dc.subjectTemperature rangeen_AU
dc.subjectCobalten_AU
dc.subjectManganeseen_AU
dc.subjectNickelen_AU
dc.subjectIronen_AU
dc.subjectRutheniumen_AU
dc.subjectSynthesisen_AU
dc.subjectElectrodesen_AU
dc.titleMixed metal–antimony oxide nanocomposites: low pH water oxidation electrocatalysts with outstanding durability at ambient and elevated temperaturesen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.66 KB
Format:
Plain Text
Description:
Collections