Predicting creep rupture life of Ni-based single crystal superalloys using divide-and-conquer approach based machine learning

dc.contributor.authorLiu, Yen_AU
dc.contributor.authorWu, JMen_AU
dc.contributor.authorWang, ZCen_AU
dc.contributor.authorLu, XGen_AU
dc.contributor.authorAvdeev, Men_AU
dc.contributor.authorShi, Sen_AU
dc.contributor.authorWang, CYen_AU
dc.contributor.authorYu, Ten_AU
dc.date.accessioned2021-06-29T21:22:58Zen_AU
dc.date.available2021-06-29T21:22:58Zen_AU
dc.date.issued2020-05-17en_AU
dc.date.statistics2021-06-28en_AU
dc.description.abstractCreep rupture life is a key material parameter for service life and mechanical properties of Ni-based single crystal superalloy materials. Therefore, it is of much practical significance to accurately and efficiently predict creep life. Here, we develop a divide-and-conquer self-adaptive (DCSA) learning method incorporating multiple material descriptors for rational and accelerated prediction of the creep rupture life. We characterize a high-quality creep dataset of 266 alloy samples with such features as alloy composition, test temperature, test stress, and heat treatment process. In addition, five microstructural parameters related to creep process, including stacking fault energy, lattice parameter, mole fraction of the γ' phase, diffusion coefficient and shear modulus, are calculated and introduced by the CALPHAD (CALculation of PHAse Diagrams) method and basic materials structure-property relationships, that enables us to reveal the effect of microstructure on creep properties. The machine learning explorations conducted on the creep dataset demonstrate the potential of the approach to achieve higher prediction accuracy with RMSE, MAPE and R2 of 0.3839, 0.0003 and 0.9176 than five alternative state-of-the-art machine learning models. On the newly collected 8 alloy samples, the error between the predicted creep life value and the experimental measured value is within the acceptable range (6.4486 h–40.7159 h), further confirming the validity of our DCSA model. Essentially, our method can establish accurate structure-property relationship mapping for the creep rupture life in a faster and cheaper manner than experiments and is expected to serve for inverse design of alloys. © 2020 Acta Materialia Inc. Published by Elsevier Ltd.en_AU
dc.identifier.citationLiu, Y., Wu, J., Wang, Z., Lu, X.-G., Avdeev, M., Shi, S., Wang, C., & Yu, T. (2020). Predicting creep rupture life of Ni-based single crystal superalloys using divide-and-conquer approach based machine learning. Acta Materialia, 195, 454-467, doi:10.1016/j.actamat.2020.05.001en_AU
dc.identifier.issn1359-6454en_AU
dc.identifier.journaltitleActa Materialiaen_AU
dc.identifier.pagination454-467en_AU
dc.identifier.urihttps://doi.org/10.1016/j.actamat.2020.05.001en_AU
dc.identifier.urihttps://apo.ansto.gov.au/dspace/handle/10238/10955en_AU
dc.identifier.volume195en_AU
dc.language.isoenen_AU
dc.publisherElsevieren_AU
dc.subjectMonocrystalsen_AU
dc.subjectCreepen_AU
dc.subjectHeat resisting alloysen_AU
dc.subjectNickelen_AU
dc.subjectMicrostructureen_AU
dc.subjectStressesen_AU
dc.titlePredicting creep rupture life of Ni-based single crystal superalloys using divide-and-conquer approach based machine learningen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections