Structure and dynamics in photovoltaic metal hydrides

dc.contributor.authorChea, Ken_AU
dc.contributor.authorGreaves, TLen_AU
dc.contributor.authorLe, Ten_AU
dc.contributor.authorRule, KCen_AU
dc.contributor.authorMole, RAen_AU
dc.contributor.authorWang, Pen_AU
dc.contributor.authorShrestha, SKen_AU
dc.contributor.authorConibeer, Gen_AU
dc.contributor.authorIles, GNen_AU
dc.date.accessioned2022-08-30T01:28:26Zen_AU
dc.date.available2022-08-30T01:28:26Zen_AU
dc.date.issued2018-01-30en_AU
dc.date.statistics2021-10-12en_AU
dc.description.abstractSolar cell technology is an active area of research with the quest to improve the efficiency of solar cells to above the current value of 44%. Hot carrier solar cells are particular types of cells which may enable higher efficiencies to be obtained. However, these are only feasible where there is a sufficiently large band gap in the phonon dispersion of the bulk material to minimise energy loss to thermalisation, thus keeping the electrons ‘hot’. Binary compounds with a large mass difference between the two constituent atoms, and high level of crystal symmetry such as titanium hydride, can have such a gap in their phonon dispersion. Titanium hydride is an interesting photovoltaic material with a broad range of properties, which vary depending on the proportion of hydride present. Theoretical studies show TiH2 has a phonon band gap of 95 meV in the bulk phase, however, experimentally this compound exists as a powder because the hydrogenation process causes large stresses in the lattice which are strong enough to crack the bulk sample. For solar cell absorber materials, a bulk sample is preferred and these can be manufactured by hydrogenating very pure Ti metal. We have previously studied TiH1.65 using X-ray powder diffraction and inelastic neutron scattering and found that while the width of the acoustic and optical phonon bands is different from those of TiH2, it did have a phonon band gap of 65 meV i.e. large enough to block Klemens’ decay. We present here an extension of this work with Fourier Transform Infra-red (FTIR) and Raman spectroscopy, along with X-Ray Diffraction (XRD) data from the photovoltaic materials, TiH2 and ZrH2.en_AU
dc.identifier.citationChea, K., Greaves, T., Le, T., Rule, K., Mole, R. A., Wang, P., Shrestha, S., Conibeer, G., & Iles, G. N. (2018). Structure and dynamics in photovoltaic metal hydrides. Poster presented to the 42nd Annual Condensed Matter and Materials Meeting Charles Sturt University, Wagga Wagga, NSW 30th January – 2nd February, 2018. (pp. 89). Retrieved from: https://physics.org.au/wp-content/uploads/cmm/2018/Wagga_2018_Conference_Handbook.pdfen_AU
dc.identifier.conferenceenddate2 February 2018en_AU
dc.identifier.conferencename42nd Annual Condensed Matter and Materials Meetingen_AU
dc.identifier.conferenceplaceWagga Wagga, NSWen_AU
dc.identifier.conferencestartdate30 January 2018en_AU
dc.identifier.pagination89en_AU
dc.identifier.urihttps://physics.org.au/wp-content/uploads/cmm/2018/Wagga_2018_Conference_Handbook.pdfen_AU
dc.identifier.urihttps://apo.ansto.gov.au/dspace/handle/10238/13668en_AU
dc.language.isoenen_AU
dc.publisherAustralian Institute of Physicsen_AU
dc.subjectCoherent scatteringen_AU
dc.subjectDiffractionen_AU
dc.subjectDimensionless numbersen_AU
dc.subjectDirect energy convertersen_AU
dc.subjectElementary particlesen_AU
dc.subjectElementsen_AU
dc.subjectEquipmenten_AU
dc.subjectFermionsen_AU
dc.subjectHydrogen compoundsen_AU
dc.subjectIntegral transformationsen_AU
dc.subjectLaser spectroscopyen_AU
dc.subjectLeptonsen_AU
dc.subjectMechanicsen_AU
dc.subjectMetalsen_AU
dc.subjectPhotoelectric cellsen_AU
dc.subjectPhotoelectric effecten_AU
dc.subjectPhotovoltaic cellsen_AU
dc.subjectQuasi particlesen_AU
dc.subjectScatteringen_AU
dc.subjectSolar equipmenten_AU
dc.subjectSpectroscopyen_AU
dc.subjectTransformationsen_AU
dc.subjectTransition elementsen_AU
dc.titleStructure and dynamics in photovoltaic metal hydridesen_AU
dc.typeConference Posteren_AU
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Wagga_2018_Conference_Handbook.pdf
Size:
2.74 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description: