Studying electrical double layers in ionic liquids using neutron and x-ray reflectometry
Loading...
Date
2010-02-05
Journal Title
Journal ISSN
Volume Title
Publisher
Australian Institute of Physics
Abstract
Ionic liquids are typically defined as salts that exist in a liquid state at, or near, room temperature. Due to their favourable properties (e.g., good thermal stability, low volatility, and wide electrochemical window), ionic liquids have potential use in many industrial applications, such as catalysis, lubrication, batteries, and metal electrodeposition. Despite recent advances in the field, ionic liquid research is still in its infancy. Additional fundamental studies are needed to explore the properties of ionic liquids and to allow the full potential of
these properties in particular applications to be exploited. Electrical double layers (EDL) are well known in aqueous colloidal systems where the potential field from a charged surface affects many properties of the particle. The structure of the EDL at a conductive surface is of prime importance to electrochemistry because it
strongly affects the transport of reactants and products within the region where electrochemical reactions take place. The understanding of the EDL in ionic liquids is not nearly as advanced as aqueous systems and even a description of how it responds to changes in the conductor potential is yet to be agreed. Here we present some recent results from simulation and Neutron/X-ray reflectometry measurements that explore the electrical double
layer in ionic liquids at the air-liquid and solid-liquid interfaces. The effect of water impurities within the (EDL) of an ionic liquid is of particular interest since they are known to reduce the electrochemical window of ionic liquids, decrease their density and viscosity, and anomalously decrease their surface tension.
Description
Keywords
Ambient temperature, Molten salts, Neutron reflectors, Electrochemistry, Electrodeposition, Lubrication, Electric batteries, Viscosity
Citation
Lauw, Y., Nelson, A., Horne, M., Rodopoulos, T., Minofar, B., Webster, N., & Hamilton, W. A. (2010). Studying electrical double layers in ionic liquids using neutron and x-ray reflectometry. Paper presented to the 34th Annual Condensed Matter and Materials Meeting 2010, Waiheke Island Resort, Waiheke, Auckland, New Zealand 2 - 5 February 2010. Retrieved from: https://physics.org.au/wp-content/uploads/cmm/2010/