Incorporation of local dissolved organic carbon into floodplain aquatic ecosystems

dc.contributor.authorSaintilan, Nen_AU
dc.contributor.authorKelleway, JJen_AU
dc.contributor.authorMazumder, Den_AU
dc.contributor.authorKobayashi, Ten_AU
dc.contributor.authorWen, Len_AU
dc.date.accessioned2021-08-19T03:00:21Zen_AU
dc.date.available2021-08-19T03:00:21Zen_AU
dc.date.issued2021-03-31en_AU
dc.date.statistics2021-08-13en_AU
dc.description.abstractEnvironmental flow releases in lowland Australian rivers are currently timed to avoid high-carbon production on floodplains. Moreover, return flows (water draining from floodplains back into rivers) are avoided if there exists a risk of introducing deoxygenated “blackwater” into the main channel. This concern has restricted the range of possible watering scenarios being considered by environmental flow managers. We utilised a series of blackwater flows in the lower Murrumbidgee floodplain, Australia, in 2016 and 2017 to determine the origin and trophic contribution of blackwater dissolved organic carbon (DOC) in a floodplain wetland. We demonstrate a consistent difference in the isotope signature of blackwater DOC compared to both dissolved inorganic carbon (DIC) and river water DOC, explained by the greater contribution of floodplain vegetation (including the river red gum Eucalyptus camaldulensis) to blackwater DOC. Stable carbon isotope signatures suggest a contribution of blackwater to algal production, whereby microbial-mediated conversion of blackwater DOC into DIC may create opportunities for primary autotrophic productivity. This carbon signature was incorporated by the common yabby Cherax destructor. In the main river channel, C. destructor, the native gudgeon Hypseleotris spp. and the introduced European carp Cyprinus carpio may utilise the same basal carbon source. The use of small to moderate floodplain inundation with return flow to the river, properly monitored, would ameliorate the risk of hypoxia while providing the benefit of floodplain-derived DOC and associated increases to in-stream productivity. © The Author(s), under exclusive licence to Springer Nature B.V. 2021en_AU
dc.identifier.citationSaintilan, N., Kelleway, J.J., Mazumder, D., Kobayashi, T., & Wen, L. (2021). Incorporation of local dissolved organic carbon into floodplain aquatic ecosystems. Aquatic Ecology 55, 779–790 (2021). doi:10.1007/s10452-021-09860-7en_AU
dc.identifier.issn1573-5125en_AU
dc.identifier.journaltitleAquatic Ecologyen_AU
dc.identifier.pagination779-790en_AU
dc.identifier.urihttps://doi.org/10.1007/s10452-021-09860-7en_AU
dc.identifier.urihttps://apo.ansto.gov.au/dspace/handle/10238/11392en_AU
dc.identifier.volume55en_AU
dc.language.isoenen_AU
dc.publisherSpringer Nature Limiteden_AU
dc.subjectAustraliaen_AU
dc.subjectRiversen_AU
dc.subjectDrainageen_AU
dc.subjectRunoffen_AU
dc.subjectWateren_AU
dc.subjectCarbonen_AU
dc.subjectVegetationen_AU
dc.subjectStable isotopesen_AU
dc.subjectAlgaeen_AU
dc.subjectFisheriesen_AU
dc.titleIncorporation of local dissolved organic carbon into floodplain aquatic ecosystemsen_AU
dc.typeJournal Articleen_AU
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Saintilan2021_Article_IncorporationOfLocalDissolvedO.pdf
Size:
1.57 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections