In situ XRD investigation of the evolution of surface layers on Pb-alloy anodes

dc.contributor.authorClancy, Men_AU
dc.contributor.authorStyles, MJen_AU
dc.contributor.authorBeetles, CJen_AU
dc.contributor.authorBirbilis, Nen_AU
dc.contributor.authorKimpton, JAen_AU
dc.contributor.authorWebster, NASen_AU
dc.date.accessioned2023-01-18T23:57:25Zen_AU
dc.date.available2023-01-18T23:57:25Zen_AU
dc.date.issued2017-08-22en_AU
dc.date.statistics2022-04-14en_AU
dc.description.abstractThe electrochemical behaviour of a number of Pb-based anode alloys, under simulated electrowinning conditions, in a 1.6 M H2SO4 electrolyte at 45 °C was studied. Namely, the evolution of PbO2 and PbSO4 surface layers was investigated by quantitative in situ synchrotron X-ray diffraction (S-XRD) and subsequent Rietveld-based quantitative phase analysis (QPA). In the context of seeking new anode alloys, this research shows that the industry standard Pb-0.08Ca-1.52Sn (wt%) anode, when exposed to a galvanostatic current and intermittent power interruptions, exhibited poor electrochemical performance relative to select custom Pb-based binary alloys; Pb–0.73Mg, Pb–5.05Ag, Pb–0.07Rh, and Pb–1.4Zn (wt%). The in situ S-XRD measurements and subsequent QPA indicated that this was linked to a lower proportion of β-PbO2, relative to PbSO4, on the Pb-0.08Ca-1.52Sn alloy at all stages of the electrochemical cycling. The best performing alloy, in terms of minimisation of overpotential during normal electrowinning operation and minimising the deleterious effects of repeated power interruptions – both of which are significant factors in energy consumption – was determined to be Pb–0.07Rh. © Cambridge University Press 2022en_AU
dc.identifier.citationClancy, M., Styles, M., Bettles, C., Birbilis, N., Kimpton, J., & Webster, N. (2017). In situ XRD investigation of the evolution of surface layers on Pb-alloy anodes. Paper presented to the Australian X-ray Analytical Association Workshops, Conference and Exhibition, "Innovation from Characterisation", 5-9 February 2017, Pullman Albert Park, Melbourne, Vic, Australia. In Powder Diffraction, 32(S2), S54-S60. doi:10.1017/S0885715617000793en_AU
dc.identifier.conferenceenddate9 February 2017en_AU
dc.identifier.conferencenameAustralian X-ray Analytical Association Workshops, Conference and Exhibition, 'Innovation from Characterisation'en_AU
dc.identifier.conferenceplaceMelbourne, Victoriaen_AU
dc.identifier.conferencestartdate5 February 2017en_AU
dc.identifier.issn0885-7156en_AU
dc.identifier.issueS2en_AU
dc.identifier.journaltitlePowder Diffractionen_AU
dc.identifier.paginationS54-S60en_AU
dc.identifier.urihttps://doi.org/10.1017/S0885715617000793en_AU
dc.identifier.urihttps://apo.ansto.gov.au/dspace/handle/10238/14392en_AU
dc.identifier.volume32en_AU
dc.language.isoenen_AU
dc.publisherCambridge University Pressen_AU
dc.subjectLayersen_AU
dc.subjectAnodesen_AU
dc.subjectAlloysen_AU
dc.subjectElectrolytesen_AU
dc.subjectX-ray diffractionen_AU
dc.subjectPowdersen_AU
dc.subjectEnergyen_AU
dc.titleIn situ XRD investigation of the evolution of surface layers on Pb-alloy anodesen_AU
dc.typeConference Paperen_AU
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
in-situ-xrd-investigation-of-the-evolution-of-surface-layers-on-pb-alloy-anodes.pdf
Size:
520.32 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description: