Structure–electrochemical evolution of a Mn-rich P2 Na 2/3 Fe 0.2 Mn 0.8 O2 Na-ion battery cathode

dc.contributor.authorDose, WMen_AU
dc.contributor.authorSharma, Nen_AU
dc.contributor.authorPramudita, JCen_AU
dc.contributor.authorBrand, HEAen_AU
dc.contributor.authorGonzalo, Een_AU
dc.contributor.authorRojo, Ten_AU
dc.date.accessioned2021-12-07T02:59:52Zen_AU
dc.date.available2021-12-07T02:59:52Zen_AU
dc.date.issued2017-08-04en_AU
dc.date.statistics2021-11-08en_AU
dc.description.abstractThe structural evolution of electrode materials directly influences the performance of sodium-ion batteries. In this work, in situ synchrotron X-ray diffraction is used to investigate the evolution of the crystal structure of a Mn-rich P2-phase Na2/3Fe0.2Mn0.8O2 cathode. A single-phase reaction takes place for the majority of the discharge-charge cycle at ∼C/10, with only a short, subtle hexagonal P2 to hexagonal P2 two-phase region early in the first charge. Thus, a higher fraction of Mn compared to previous studies is demonstrated to stabilize the P2 structure at high and low potentials, with neither "Z"/OP4 phases in the charged state nor significant quantities of the P′2 phase in the discharged state between 1.5 and 4.2 V. Notably, sodium ions inserted during discharge are located on both available crystallographic sites, albeit with a preference for the site sharing edges with the MO6 octahedral unit. The composition Na∼0.70Fe0.2Mn0.8O2 prompts a reversible single-phase sodium redistribution between the two sites. Sodium ions vacate the site sharing faces (Naf), favoring the site sharing edges (Nae) to give a Nae/Naf site occupation of 4:1 in the discharged state. This site preference could be an intermediate state prior to the formation of the P′2 phase. Thus, this work shows how the Mn-rich Na2/3Fe0.2Mn0.8O2 composition and its sodium-ion distribution can minimize phase transitions during battery function, especially in the discharged state. © 2017 American Chemical Society.en_AU
dc.identifier.citationDose, W. M., Sharma, N., Pramudita, J. C., Brand, H. E. A., Gonzalo, E. & Rojo, T. (2017). Structure–electrochemical evolution of a Mn-rich P2 Na 2/3 Fe 0. 2 Mn 0.8 O2 Na-ion battery cathode. Chemistry of Materials, 29(17), 7416-7423. doi:10.1021/acs.chemmater.7b02397en_AU
dc.identifier.issn0897-4756en_AU
dc.identifier.issue17en_AU
dc.identifier.journaltitleChemistry of Materialsen_AU
dc.identifier.pagination7416-7423en_AU
dc.identifier.urihttps://doi.org/10.1021/acs.chemmater.7b02397en_AU
dc.identifier.urihttps://apo.ansto.gov.au/dspace/handle/10238/12365en_AU
dc.identifier.volume29en_AU
dc.language.isoenen_AU
dc.publisherAmerican Chemical Societyen_AU
dc.subjectCrystal latticesen_AU
dc.subjectCrystal structureen_AU
dc.subjectElectrodesen_AU
dc.subjectCathodesen_AU
dc.subjectElectric batteriesen_AU
dc.subjectSodiumen_AU
dc.subjectTransition elementsen_AU
dc.titleStructure–electrochemical evolution of a Mn-rich P2 Na 2/3 Fe 0.2 Mn 0.8 O2 Na-ion battery cathodeen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections