Yttria-stabilised zirconia: a trend study of structural, electronic and vibrational properties
dc.contributor.author | Cousland, GP | en_AU |
dc.contributor.author | Cui, XY | en_AU |
dc.contributor.author | Smith, AE | en_AU |
dc.contributor.author | Stampfl, APJ | en_AU |
dc.contributor.author | Stampfl, CM | en_AU |
dc.date.accessioned | 2021-08-13T00:32:51Z | en_AU |
dc.date.available | 2021-08-13T00:32:51Z | en_AU |
dc.date.issued | 2015-02-03 | en_AU |
dc.date.statistics | 2021-08-12 | en_AU |
dc.description.abstract | Yttria-stabilised zirconia (YSZ) is an important ceramic, due to its dielectric properties and its strength, which is maintained at high temperature. Finding the structure of YSZ has proven difficult because it changes with temperature, Yttria (Y2O3) concentration and sample preparation. Further, the scattering amplitudes of Zr and Y, for both x-rays and neutrons, are very similar and so cannot discriminate atom positions. Methods are used where state-of-the art DFT code (DMol3) simulations with 10.35 mol% Y2O3 are compared with x-ray photoemission spectroscopy to examine short-range order, and with inelastic neutron scattering to examine long-range order, for samples of YSZ with 8-9 mol%. Furthermore, YSZ with 10.35 mol% is used along with recently published models of 14, 17, 20 and 40 mol%, together with cubic, tetragonal and monoclinic zirconia (ZrO2), in a trend study which shows an increase in band-gap (0.73 eV) and decrease in valence band (2.0 eV) across the range of increasing Y2O3 concentration and relative to cubic ZrO2. | en_AU |
dc.identifier.citation | Cousland, G. P., Chi, X. Y., Smith, A. E., Stampfl, A. P. J., & Stampfl, C. M. (2015). Yttria-stabilised zirconia: a trend study of structural, electronic and vibrational properties. Paper presented at the 39th Annual Condensed Matter and Materials Meeting, Charles Sturt University, Wagga Wagga, NSW, 3 February 2015 - 6 February 2015, (pp. 57). Retrieved from: https://physics.org.au/wp-content/uploads/cmm/2015/Wagga2015_10_Handbook.pdf | en_AU |
dc.identifier.conferenceenddate | 6 February 2015 | en_AU |
dc.identifier.conferencename | 39th Annual Condensed Matter and Materials Meeting | en_AU |
dc.identifier.conferenceplace | Wagga Wagga, NSW | en_AU |
dc.identifier.conferencestartdate | 3 February 2015 | en_AU |
dc.identifier.isbn | 978-0-646-96433-1 | en_AU |
dc.identifier.pagination | 57 | en_AU |
dc.identifier.uri | https://physics.org.au/wp-content/uploads/cmm/2015/Wagga2015_10_Handbook.pdf | en_AU |
dc.identifier.uri | https://apo.ansto.gov.au/dspace/handle/10238/11345 | en_AU |
dc.language.iso | en | en_AU |
dc.publisher | Australian Institute of Physics | en_AU |
dc.subject | Ceramics | en_AU |
dc.subject | Density functional method | en_AU |
dc.subject | Dielectric properties | en_AU |
dc.subject | Inelastic scattering | en_AU |
dc.subject | Structural chemical analysis | en_AU |
dc.subject | Surface properties | en_AU |
dc.subject | Temperature dependence | en_AU |
dc.subject | X-ray photoelectron spectroscopy | en_AU |
dc.subject | Yttrium oxides | en_AU |
dc.subject | Zirconium oxides | en_AU |
dc.title | Yttria-stabilised zirconia: a trend study of structural, electronic and vibrational properties | en_AU |
dc.type | Conference Abstract | en_AU |