Real-space nanostructure via correlation analysis of scanning microfocus x-ray diffraction data

dc.contributor.authorPaporakis, Sen_AU
dc.contributor.authorHasset, MPen_AU
dc.contributor.authorAdams, Pen_AU
dc.contributor.authorBinns, Jen_AU
dc.contributor.authorKewish, CMen_AU
dc.contributor.authorChristofferson, AJen_AU
dc.contributor.authorGreaves, TLen_AU
dc.contributor.authorMartin, AVen_AU
dc.date.accessioned2025-08-01T05:35:14Zen_AU
dc.date.available2025-08-01T05:35:14Zen_AU
dc.date.issued2025-02-02en_AU
dc.date.statistics2025-08-01en_AU
dc.description.abstractFluctuation scattering techniques (also known as x-ray cross-correlation analysis techniques) aim to extract 3D structural information from scanning diffraction experiments via statistical analysis methods, typically based on correlating diffracted intensities [ 1]. There are opportunities to study the nanostructure of disordered and polycrystalline materials, nanoparticle assemblies [ 2] and to image viruses and nanoparticles [ 3]. These methods use similar microfocus or nanofocus beam conditions to ptychography and spectroscopic mapping techniques and represent a route to add new capabilities to existing spectromicroscopy beamlines. A key challenge for fluctuation scattering methods is interpreting the results in terms of real space structure [ 1]. Here we present different approaches for interpreting fluctuation scattering results in real-space. As shown in Fig. 1, for disordered samples it is possible to extract the pair-angle distribution (PADF) function which is higher order form of the well-known pair-distribution function [ 4, 5]. We explain how the PADF can reveal 3D nanostructural information in highly disordered materials and show examples from thermotropic and lyotropic liquid crystals [ 6]. For polycrystalline materials we show how, depending on beam size and domain size, we can gain insights into the microtexture (orientation distribution of the grains) or the structure of the unit cell [ 7]. We also present an algorithm that can extract crystallographic structure factors to provide a route to structure determination via correlation analysis [ 8]. There is significant potential to grow these capabilities in a way that is complimentary to existing imaging and mapping techniques, and which may allow access to nanostructural information that is otherwise inaccessible.en_AU
dc.identifier.citationPaporakis, S., Hasset, M., Adams, P., Binns, J., Kewish, C. M., Christofferson, A., Greaves, T., & Martin, A. V. (2025). Real-space nanostructure via correlation analysis of scanning microfocus x-ray diffraction data. Paper presented to the 13th Asia Pacific Microscopy Congress 2025 (APMC13), 2-7 February, 2025, Brisbane, Australia. doi:10.14293/apmc13-2025-0208en_AU
dc.identifier.conferenceenddate2026-02-07en_AU
dc.identifier.conferencename13th Asia Pacific Microscopy Congress 2025 (APMC13)en_AU
dc.identifier.conferenceplaceBrisbane, Australiaen_AU
dc.identifier.conferencestartdate2025-02-02en_AU
dc.identifier.issue2en_AU
dc.identifier.pagination717-721en_AU
dc.identifier.urihttps://apo.ansto.gov.au/handle/10238/16385en_AU
dc.identifier.volume53-55en_AU
dc.language.isoenen_AU
dc.publisherScienceOpenen_AU
dc.relation.urihttps://doi.org/10.14293/apmc13-2025-0208en_AU
dc.subjectScatteringen_AU
dc.subjectCorrelationsen_AU
dc.subjectDiffractionen_AU
dc.subjectStatisticsen_AU
dc.subjectNanostructuresen_AU
dc.subjectPolycrystalsen_AU
dc.subjectNanoparticlesen_AU
dc.subjectBeamsen_AU
dc.subjectMaterialsen_AU
dc.titleReal-space nanostructure via correlation analysis of scanning microfocus x-ray diffraction dataen_AU
dc.typeConference Paperen_AU
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Kewish.pdf
Size:
827.51 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.66 KB
Format:
Plain Text
Description: