Genetic biofortification of wheat with zinc: opportunities to fine‐tune zinc uptake, transport and grain loading

dc.contributor.authorKamaral, Cen_AU
dc.contributor.authorNeate, SMen_AU
dc.contributor.authorGunasinghe, Nen_AU
dc.contributor.authorMilham, PJen_AU
dc.contributor.authorPaterson, DJen_AU
dc.contributor.authorKopittke, PMen_AU
dc.contributor.authorSeneweera, Sen_AU
dc.date.accessioned2024-12-06T03:42:52Zen_AU
dc.date.available2024-12-06T03:42:52Zen_AU
dc.date.issued2021-12-30en_AU
dc.date.statistics2024-12-04en_AU
dc.description.abstractZinc (Zn) is an important micronutrient in the human body, and health complications associated with insufficient dietary intake of Zn can be overcome by increasing the bioavailable concentrations in edible parts of crops (biofortification). Wheat (Triticum aestivum L) is the most consumed cereal crop in the world; therefore, it is an excellent target for Zn biofortification programs. Knowledge of the physiological and molecular processes that regulate Zn concentration in the wheat grain is restricted, inhibiting the success of genetic Zn biofortification programs. This review helps break this nexus by advancing understanding of those processes, including speciation regulated uptake, root to shoot transport, remobilisation, grain loading and distribution of Zn in wheat grain. Furthermore, new insights to genetic Zn biofortification of wheat are discussed, and where data are limited, we draw upon information for other cereals and Fe distribution. We identify the loading and distribution of Zn in grain as major bottlenecks for biofortification, recognising anatomical barriers in the vascular region at the base of the grain, and physiological and molecular restrictions localised in the crease region as major limitations. Movement of Zn from the endosperm cavity into the modified aleurone, aleurone and then to the endosperm is mainly regulated by ZIP and YSL transporters. Zn complexation with phytic acid in the aleurone limits Zn mobility into the endosperm. These insights, together with synchrotron‐X‐ray‐fluorescence microscopy, support the hypothesis that a focus on the mechanisms of Zn loading into the grain will provide new opportunities for Zn biofortification of wheat. © 2021 Scandinavian Plant Physiology Society.en_AU
dc.description.sponsorshipThis work was supported by the University of Southern Queensland, Australia. The analysis of element distribution within the grain sections was undertaken using the XFM beamline at the Australian Synchrotron, part of the Australian Nuclear Science and Technology Organisation (ANSTO).en_AU
dc.format.mediumPrint-Electronicen_AU
dc.identifier.articlenumbere13612en_AU
dc.identifier.citationKamaral, C., Neate, S. M., Gunasinghe, N., Milham, P. J., Paterson, D. J., Kopittke, P. M., & Seneweera, S. (2022). Genetic biofortification of wheat with zinc: opportunities to fine-tune zinc uptake, transport and grain loading. Physiologia Plantarum, 174(1), e13612. doi:10.1111/ppl.13612en_AU
dc.identifier.issn0031-9317en_AU
dc.identifier.issn1399-3054en_AU
dc.identifier.issue1en_AU
dc.identifier.journaltitlePhysiologia Plantarumen_AU
dc.identifier.urihttps://doi.org/10.1111/ppl.13612en_AU
dc.identifier.urihttps://apo.ansto.gov.au/handle/10238/15808en_AU
dc.identifier.volume174en_AU
dc.languageEnglishen_AU
dc.language.isoenen_AU
dc.publisherWileyen_AU
dc.subjectIronen_AU
dc.subjectZincen_AU
dc.subjectGeneticsen_AU
dc.subjectCropsen_AU
dc.subjectMoleculesen_AU
dc.subjectWheaten_AU
dc.subjectCerealsen_AU
dc.subjectEndospermen_AU
dc.subjectSolar X-ray burstsen_AU
dc.subjectX-ray fluorescence analysisen_AU
dc.titleGenetic biofortification of wheat with zinc: opportunities to fine‐tune zinc uptake, transport and grain loadingen_AU
dc.typeJournal Articleen_AU
dcterms.dateAccepted2021-12-02en_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.66 KB
Format:
Plain Text
Description:
Collections