Ultra-high thermoelectric performance in graphene incorporated Cu2Se: role of mismatching phonon modes

dc.contributor.authorLi, Men_AU
dc.contributor.authorCortie, DLen_AU
dc.contributor.authorLiu, Jen_AU
dc.contributor.authorYu, DHen_AU
dc.contributor.authorIslam, SMKNen_AU
dc.contributor.authorZhao, Len_AU
dc.contributor.authorMitchell, DRGen_AU
dc.contributor.authorMole, RAen_AU
dc.contributor.authorCortie, MBen_AU
dc.contributor.authorDou, SXen_AU
dc.contributor.authorWang, XLen_AU
dc.date.accessioned2024-12-06T03:38:04Zen_AU
dc.date.available2024-12-06T03:38:04Zen_AU
dc.date.issued2018-11en_AU
dc.date.statistics2024-07-18en_AU
dc.description.abstractA thermoelectric material consisting of Cu2Se incorporated with up to 0.45 wt% of graphene nanoplates is reported. The carbon-reinforced Cu2Se exhibits an ultra-high thermoelectric figure-of-merit of zT = 2.44 ± 0.25 at 870 K. Microstructural characterization reveals dense, nanostructured grains of Cu2Se with multilayer-graphene and graphite agglomerations located at grain boundaries. High temperature X-ray diffraction shows that the graphene incorporated Cu2Se matrix retains a cubic structure and the composite microstructure is chemically stable. Based on the experimental structure, density functional theory was used to calculate the formation energy of carbon point defects and the associated phonon density of states. The isolated carbon inclusion is shown to have a high formation energy in Cu2Se whereas graphene and graphite phases are enthalpically stable relative to the solid solution. Neutron spectroscopy proves that there is a frequency mismatch in the phonon density of states between the carbon honeycomb phases and cubic Cu2Se. This provides a mechanism for the strong scattering of phonons at the composite interfaces, which significantly impedes the conduction of heat and enhances thermoelectric performance. © 2018 Elsevier Ltd. Aen_AU
dc.description.sponsorshipThis work was partially supported by the Australian Research Council (ARC) through a Discovery Project DP 130102956 (XLW), an ARC Professorial Future Fellowship project (FT 130100778, XLW) and a Linkage Infrastructure Equipment and Facilities (LIEF) Grant (LE 120100069, XLW). We acknowledge the fruitful discussions with Dr. Robert Robinson. We thank the Australian Synchrotron and ANSTO for access to X-ray and neutron instruments. Dr. Mitchell Nancarrow of the UOW EMC is thanked for assistance with sample preparation and SEM analysis. This research used equipment (FIB and STEM) funded by the ARC LIEF grants: LE160100063 and LE120100104 respectively, located at the UOW Electron Microscopy Centre. This research was undertaken with the assistance of resources and services from the National Computational Infrastructure (NCI), which is supported by the Australian Government.en_AU
dc.identifier.citationLi, M., Cortie, D. L., Liu, J., Yu, D., Islam, S. M. K. N., Zhao, L., Mitchell, D. R. G., Mole, R. A., Cortie, M. B., Dou, S., & Wang, X. (2018). Ultra-high thermoelectric performance in graphene incorporated Cu2Se: role of mismatching phonon modes. Nano Energy, 53, 993-1002. doi:10.1016/j.nanoen.2018.09.041en_AU
dc.identifier.issn2211-2855en_AU
dc.identifier.journaltitleNano Energyen_AU
dc.identifier.pagination993-1002en_AU
dc.identifier.urihttps://doi.org/10.1016/j.nanoen.2018.09.041en_AU
dc.identifier.urihttps://apo.ansto.gov.au/handle/10238/15807en_AU
dc.identifier.volume53en_AU
dc.languageEnglishen_AU
dc.language.isoenen_AU
dc.publisherElsevieren_AU
dc.subjectThermoelectricityen_AU
dc.subjectSeleniumen_AU
dc.subjectCopperen_AU
dc.subjectGrapheneen_AU
dc.subjectPhononsen_AU
dc.subjectNanostructuresen_AU
dc.subjectAgglomerationen_AU
dc.subjectPoint defectsen_AU
dc.subjectCarbonen_AU
dc.subjectSpectroscopyen_AU
dc.subjectDensity functional methoden_AU
dc.titleUltra-high thermoelectric performance in graphene incorporated Cu2Se: role of mismatching phonon modesen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.66 KB
Format:
Plain Text
Description:
Collections