Vortex fluidic induced mass transfer across immiscible phases

dc.contributor.authorJellicoe, Men_AU
dc.contributor.authorIgder, Aen_AU
dc.contributor.authorChuah, Cen_AU
dc.contributor.authorJones, DBen_AU
dc.contributor.authorLuo, Xen_AU
dc.contributor.authorStubbs, KAen_AU
dc.contributor.authorCrawley, EMen_AU
dc.contributor.authorPye, SJen_AU
dc.contributor.authorJoseph, Nen_AU
dc.contributor.authorVimalananthan, Ken_AU
dc.contributor.authorGardner, Zen_AU
dc.contributor.authorHarvey, DPen_AU
dc.contributor.authorChen, XJen_AU
dc.contributor.authorSalvemini, Fen_AU
dc.contributor.authorHe, Sen_AU
dc.contributor.authorZhang, Wen_AU
dc.contributor.authorChalker, JMen_AU
dc.contributor.authorQuinton, JSen_AU
dc.contributor.authorTang, YHen_AU
dc.contributor.authorRaston, CLen_AU
dc.date.accessioned2024-01-22T00:38:13Zen_AU
dc.date.available2024-01-22T00:38:13Zen_AU
dc.date.issued2022-01-31en_AU
dc.date.statistics2022-04-22en_AU
dc.description.abstractMixing immiscible liquids typically requires the use of auxiliary substances including phase transfer catalysts, microgels, surfactants, complex polymers and nano-particles and/or micromixers. Centrifugally separated immiscible liquids of different densities in a 45° tilted rotating tube offer scope for avoiding their use. Micron to submicron size topological flow regimes in the thin films induce high inter-phase mass transfer depending on the nature of the two liquids. A hemispherical base tube creates a Coriolis force as a ‘spinning top’ (ST) topological fluid flow in the less dense liquid which penetrates the denser layer of liquid, delivering liquid from the upper layer through the lower layer to the surface of the tube with the thickness of the layers determined using neutron imaging. Similarly, double helical (DH) topological flow in the less dense liquid, arising from Faraday wave eddy currents twisted by Coriolis forces, impact through the less dense liquid onto the surface of the tube. The lateral dimensions of these topological flows have been determined using ‘molecular drilling’ impacting on a thin layer of polysulfone on the surface of the tube and self-assembly of nanoparticles at the interface of the two liquids. At high rotation speeds, DH flow also occurs in the denser layer, with a critical rotational speed reached resulting in rapid phase demixing of preformed emulsions of two immiscible liquids. ST flow is perturbed relative to double helical flow by changing the shape of the base of the tube while maintaining high mass transfer between phases as demonstrated by circumventing the need for phase transfer catalysts. The findings presented here have implications for overcoming mass transfer limitations at interfaces of liquids, and provide new methods for extractions and separation science, and avoiding the formation of emulsions. © 2022 The Author(s). Published by the Royal Society of Chemistry. Open Access CC BY.en_AU
dc.identifier.citationJellicoe, M., Igder, A., Chuah, C., Jones, D. B., Luo, X., Stubbs, K. A., Crawley, E. M., Pye, S. J., Joseph, N., Vimalananthan, K., Gardner, Z., Harvey, D. P., Chen, X., Salvemini, F., He, S., Zhang, W., Chalker, J. M., Quinton, J. S., Tang, Y. & Raston, C. L. (2022). Vortex fluidic induced mass transfer across immiscible phases. Chemical Science, 13(12), 3375-3385. doi:10.1039/D1SC05829Ken_AU
dc.identifier.issn2041-6520en_AU
dc.identifier.issue12en_AU
dc.identifier.journaltitleChemical Scienceen_AU
dc.identifier.pagination3375-3385en_AU
dc.identifier.urihttps://doi.org/10.1039/D1SC05829Ken_AU
dc.identifier.urihttps://apo.ansto.gov.au/handle/10238/15365en_AU
dc.identifier.volume13en_AU
dc.language.isoenen_AU
dc.publisherRoyal Society of Chemistryen_AU
dc.relation.urihttps://doi.org/10.1039/D1SC05829Ken_AU
dc.subjectVortex flowen_AU
dc.subjectMass transferen_AU
dc.subjectLiquidsen_AU
dc.subjectPolymersen_AU
dc.subjectNanoparticlesen_AU
dc.subjectThin filmsen_AU
dc.subjectFaraday methoden_AU
dc.subjectEmulsionsen_AU
dc.titleVortex fluidic induced mass transfer across immiscible phasesen_AU
dc.typeJournal Articleen_AU
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
d1sc05829k.pdf
Size:
1.88 MB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
d1sc05829k1.pdf
Size:
19.96 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections