On the prediction of creep behaviour of alloy 617 using Kachanov-Rabotnov model coupled with multi-objective genetic algorithm optimisation
dc.contributor.author | Choi, J | en_AU |
dc.contributor.author | Bortolan Neto, L | en_AU |
dc.contributor.author | Wright, RN | en_AU |
dc.contributor.author | Kruzic, JJ | en_AU |
dc.contributor.author | Muránsky, O | en_AU |
dc.date.accessioned | 2023-04-06T02:18:47Z | en_AU |
dc.date.available | 2023-04-06T02:18:47Z | en_AU |
dc.date.issued | 2022-10 | en_AU |
dc.date.statistics | 2022-12-15 | en_AU |
dc.description.abstract | The accurate prediction of elevated-temperature creep behaviour of alloys is important for preventing catastrophic failure of systems operating under prolonged elevated temperature-stress conditions. Here, we couple the Kachanov-Rabotnov (K-R) creep model with a multi-objective genetic algorithm (MOGA) to predict the creep behaviour of Alloy 617 at 800°C, 900°C, and 1000°C, under various stress conditions. It is shown that the MOGA-optimised K-R creep model can capture the overall elevated-temperature behaviour of the alloy at 800°C under a wide range of stress conditions. However, at 900°C and 1000°C, oxidation leads to the atypical accumulation of creep plasticity, which the K-R model cannot account for. Nevertheless, it is shown that the proposed methodology of optimising the K-R model with a MOGA can consistently provide accurate results within the limits of the K-R model. Crown Copyright © 2022 Published by Elsevier Ltd. | en_AU |
dc.identifier.articlenumber | 104721 | en_AU |
dc.identifier.citation | Choi, J., Bortolan Neto, L., Wright, R. N., Kruzic, J. J., & Muránsky, O. (2022). On the prediction of creep behaviour of alloy 617 using Kachanov-Rabotnov model coupled with multi-objective genetic algorithm optimisation. International Journal of Pressure Vessels and Piping, 199, 104721. doi:10.1016/j.ijpvp.2022.104721 | en_AU |
dc.identifier.issn | 0308-0161 | en_AU |
dc.identifier.journaltitle | International Journal of Pressure Vessels and Piping | en_AU |
dc.identifier.uri | https://doi.org/10.1016/j.ijpvp.2022.104721 | en_AU |
dc.identifier.uri | https://apo.ansto.gov.au/dspace/handle/10238/14814 | en_AU |
dc.identifier.volume | 199 | en_AU |
dc.language.iso | en | en_AU |
dc.publisher | Elsevier | en_AU |
dc.subject | Forecasting | en_AU |
dc.subject | Creep | en_AU |
dc.subject | Alloys | en_AU |
dc.subject | Oxidization | en_AU |
dc.subject | Algorithms | en_AU |
dc.subject | Deformation | en_AU |
dc.title | On the prediction of creep behaviour of alloy 617 using Kachanov-Rabotnov model coupled with multi-objective genetic algorithm optimisation | en_AU |
dc.type | Journal Article | en_AU |
Files
Original bundle
1 - 3 of 3
Loading...
- Name:
- 1-s2.0-S0308016122001107-main.pdf
- Size:
- 8.07 MB
- Format:
- Adobe Portable Document Format
- Description:
Loading...
- Name:
- 1-s2.0-S0308016122001107-mmc1.xlsx
- Size:
- 1.81 MB
- Format:
- Microsoft Excel XML
- Description:
Loading...
- Name:
- 1-s2.0-S0308016122001107-mmc2.xlsx
- Size:
- 14.6 KB
- Format:
- Microsoft Excel XML
- Description:
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 1.63 KB
- Format:
- Item-specific license agreed upon to submission
- Description: