High-performance P2-phase Na2/3Mn0. 8Fe0. 1Ti0. 1O2 cathode material for ambient-temperature sodium-ion batteries

dc.contributor.authorHan, MHen_AU
dc.contributor.authorGonzalo, Een_AU
dc.contributor.authorSharma, Nen_AU
dc.contributor.authorLópez del Amo, JMen_AU
dc.contributor.authorArmand, Men_AU
dc.contributor.authorAvdeev, Men_AU
dc.contributor.authorSaiz Garitaonandia, JJen_AU
dc.contributor.authorRojo, Ten_AU
dc.date.accessioned2020-11-03T03:33:12Zen_AU
dc.date.available2020-11-03T03:33:12Zen_AU
dc.date.issued2015-11-25en_AU
dc.date.statistics2020-11-02en_AU
dc.description.abstractHigh-performance Mn-rich P2-phase Na2/3Mn0.8Fe0.1Ti0.1O2 is synthesized by a ceramic method, and its stable electrochemical performance is demonstrated. 23Na solid-state NMR confirms the substitution of Ti4+ ions in the transition metal oxide layer and very fast Na+ mobility in the interlayer space. The pristine electrode delivers a second charge/discharge capacity of 146.57/144.16 mA·h·g–1 and retains 95.09% of discharge capacity at the 50th cycle within the voltage range 4.0–2.0 V at C/10. At 1C, the reversible specific capacity still reaches 99.40 mA·h·g–1, and capacity retention of 87.70% is achieved from second to 300th cycle. In addition, the moisture-exposed electrode reaches reversible capacities of more than 130 and 80 mA·h·g–1 for C/10 and 1C, respectively, with excellent capacity retention. The correlation between overall electrochemical performance of both electrodes and crystal structural characteristics are investigated by neutron powder diffraction. The stability of pristine electrode’s crystallographic structure during the charge/discharge process has been investigated by in situ X-ray diffraction, where only a solid solution reaction occurs within the given voltage range except for a small biphasic mechanism occurring at or below 2.2 V during the discharge process. The relatively small substitution (20%) at the transition metal site leads to stable electrochemical performance, which is in part derived from the structural stability during electrochemical cycling. Therefore, the small cosubstitution (e.g., with Ti and Fe) route suggests a possible new scope for the design of sodium-ion battery electrodes that are suitable for long-term cycling. © 2015 American Chemical Societyen_AU
dc.identifier.citationHan, M. H., Gonzalo, E., Sharma, N., López del Amo, J. M., Armand, M., Avdeev, M., Saiz Garitaonandia, J. J., & Rojo, T. (2015). High-performance P2-phase Na2/3Mn0. 8Fe0. 1Ti0. 1O2 cathode material for ambient-temperature sodium-ion batteries. Chemistry of Materials, 28, 1, 106–116. doi:10.1021/acs.chemmater.5b03276en_AU
dc.identifier.issn1520-5002en_AU
dc.identifier.issue1en_AU
dc.identifier.journaltitleChemistry of Materialsen_AU
dc.identifier.pagination106-116en_AU
dc.identifier.urihttps://doi.org/10.1021/acs.chemmater.5b03276en_AU
dc.identifier.urihttps://apo.ansto.gov.au/dspace/handle/10238/9955en_AU
dc.identifier.volume28en_AU
dc.language.isoenen_AU
dc.publisherAmerican Chemical Societyen_AU
dc.subjectOxidesen_AU
dc.subjectCrystal latticesen_AU
dc.subjectElectrodesen_AU
dc.subjectTransition elementsen_AU
dc.subjectElectrochemistryen_AU
dc.subjectNeutron diffractionen_AU
dc.subjectRadioisotope batteriesen_AU
dc.titleHigh-performance P2-phase Na2/3Mn0. 8Fe0. 1Ti0. 1O2 cathode material for ambient-temperature sodium-ion batteriesen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections