First extensive study of silver-doped lanthanum manganite nanoparticles for inducing selective chemotherapy and radio-toxicity enhancement

dc.contributor.authorKhochaiche, Aen_AU
dc.contributor.authorWestlake, Men_AU
dc.contributor.authorO'Keefe, Aen_AU
dc.contributor.authorEngels, Een_AU
dc.contributor.authorVogel, Sen_AU
dc.contributor.authorValceski, Men_AU
dc.contributor.authorLi, Nen_AU
dc.contributor.authorRule, KCen_AU
dc.contributor.authorHorvat, Jen_AU
dc.contributor.authorKonstantinov, Ken_AU
dc.contributor.authorRosenfeld, ABen_AU
dc.contributor.authorLerch, MLFen_AU
dc.contributor.authorCorde, Sen_AU
dc.contributor.authorTehei, Men_AU
dc.date.accessioned2021-04-16T03:09:05Zen_AU
dc.date.available2021-04-16T03:09:05Zen_AU
dc.date.issued2021-04en_AU
dc.date.statistics2021-03-29en_AU
dc.description.abstractNanoparticles have a great potential to increase the therapeutic efficiency of several cancer therapies. This research examines the potential for silver-doped lanthanum manganite nanoparticles to enhance radiation therapy to target radioresistant brain cancer cells, and their potential in combinational therapy with magnetic hyperthermia. Magnetic and structural characterisation found all dopings of nanoparticles (NPs) to be pure and single phase with an average crystallite size of approximately 15 nm for undoped NPs and 20 nm for silver doped NPs. Additionally, neutron diffraction reveals that La0.9Ag0.1MnO3 (10%-LAGMO) NPs exhibit residual ferromagnetism at 300 K that is not present in lower doped NPs studied in this work, indicating that the Curie temperature may be manipulated according to silver doping. This radiobiological study reveals a completely cancer-cell selective treatment for LaMnO3, La0.975Ag0.025MnO3 and La0.95Ag0.05MnO3 (0, 2.5 and 5%-LAGMO) and also uncovers a potent combination of undoped lanthanum manganite with orthovoltage radiation. Cell viability assays and real time imaging results indicated that a concentration of 50 μg/mL of the aforementioned nanoparticles do not affect the growth of Madin-Darby Canine Kidney (MDCK) non-cancerous cells over time, but stimulate its metabolism for overgrowth, while being highly toxic to 9L gliosarcoma (9LGS). This is not the case for 10%-LAGMO nanoparticles, which were toxic to both non-cancerous and cancer cell lines. The nanoparticles also exhibited a level of toxicity that was regulated by the overproduction of free radicals, such as reactive oxygen species, amplified when silver ions are involved. With the aid of fluorescent imaging, the drastic effects of these reactive oxygen species were visualised, where nucleus cleavage (an apoptotic indicator) was identified as a major consequence. The genotoxic response of this effect for 9LGS and MDCK due to 10%-LAGMO NPs indicates that it is also causing DNA double strand breaks within the cell nucleus. Using 125 kVp orthovoltage radiation, in combination with an appropriate amount of NP-induced cell death, identified undoped lanthanum manganite as the most ideal treatment. Real-time imaging following the combination treatment of undoped lanthanum manganite nanoparticles and radiation, highlighted a hinderance of growth for 9LGS, while MDCK growth was boosted. The clonogenic assay following incubation with undoped lanthanum manganite nanoparticles combined with a relatively low dose of radiation (2 Gy) decreased the surviving fraction to an exceptionally low (0.6 ± 6.7)%. To our knowledge, these results present the first biological in-depth analysis on silver-doped lanthanum manganite as a brain cancer selective chemotherapeutic and radiation dose enhancer and as a result will propel its first in vivo investigation. © 2021 Elsevier B.V.en_AU
dc.identifier.articlenumber111970en_AU
dc.identifier.citationKhochaiche, A., Westlake, M., O'Keefe, A., Engels, E., Vogel, S., Valceski, M., Li, N., Rule, K. C., Horvat, J., Konstantinov, K., Rosenfeld, A., Lerch, M., Corde, S., & Tehei, M. (2021). First extensive study of silver-doped lanthanum manganite nanoparticles for inducing selective chemotherapy and radio-toxicity enhancement. Materials Science and Engineering: C, 123, 111970. doi:10.1016/j.msec.2021.111970en_AU
dc.identifier.issn0928-4931en_AU
dc.identifier.journaltitleMaterials Science and Engineering: Cen_AU
dc.identifier.urihttps://doi.org/10.1016/j.msec.2021.111970en_AU
dc.identifier.urihttps://apo.ansto.gov.au/dspace/handle/10238/10655en_AU
dc.identifier.volume123en_AU
dc.language.isoenen_AU
dc.publisherElsevier B. V.en_AU
dc.subjectNeoplasmsen_AU
dc.subjectTherapyen_AU
dc.subjectToxicityen_AU
dc.subjectLanthanumen_AU
dc.subjectNanoparticlesen_AU
dc.subjectOxygenen_AU
dc.subjectBrainen_AU
dc.subjectCurie pointen_AU
dc.titleFirst extensive study of silver-doped lanthanum manganite nanoparticles for inducing selective chemotherapy and radio-toxicity enhancementen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections