Tetraoxolene-bridged rare-earth complexes: a radical-bridged dinuclear Dy single-molecule magnet

dc.contributor.authorReed, WRen_AU
dc.contributor.authorDunstan, MAen_AU
dc.contributor.authorGable, RWen_AU
dc.contributor.authorPhonsri, Wen_AU
dc.contributor.authorMurray, KSen_AU
dc.contributor.authorMole, RAen_AU
dc.contributor.authorBoskovic, Cen_AU
dc.date.accessioned2024-12-06T01:50:59Zen_AU
dc.date.available2024-12-06T01:50:59Zen_AU
dc.date.issued2019-08-22en_AU
dc.date.statistics2024-11-28en_AU
dc.description.abstractTwo families of neutral tetraoxolene-bridged dinuclear rare earth complexes of general formula [((HBpz3)2RE)2(μ-tetraoxolene)] (RE = Y and Dy; HBpz3− = hydrotris(pyrazolyl)borate; tetraoxolene = fluoranilate (fa2−; 1-RE) or bromanilate (ba2−; 2-RE)) have been synthesised and characterised. In each case, the bridging tetraoxolene ligand is in the diamagnetic dianionic form and each rare earth metal centre has two HBpz3− ligands completing the coordination. Electrochemical studies on the soluble 2-RE family reveal a tetraoxolene-based reversible one-electron reduction. Bulk chemical reduction with cobaltocene affords the cobaltocenium (CoCp+) salt of the 1e-reduced analogue: [CoCp][((HBpz3)2RE)2(μ-ba˙)] (3-RE) that incorporates a radical trianionic form of the bromanilate bridging ligand. Alternating current (ac) magnetic susceptibility studies of 2-Dy reveal slow magnetic relaxation only in the presence of an applied magnetic field, but reduction to radical-bridged 3-Dy affords frequency-dependent peaks in the out-of-phase ac susceptibility in zero applied field. Exchange coupling between the Dy(III) ions and the radical bridging ligand thus reduces zero-field magnetisation quantum tunnelling and confers single-molecule magnet status on the complex. Comprehensive analysis of the magnetic relaxation data indicates that a combination of Orbach, Raman and direct relaxation processes are required to fit the data for both dysprosium bromanilate complexes. © Royal Society of Chemistry 2024.en_AU
dc.description.sponsorshipWe thank the Australian Research Council for financial support (DP170100034) to CB, KSM and RAM. MAD thanks AINSE for an AINSE Post-Graduate Research Award. This research was undertaken in part using the PPMS at the Australian Centre for Neutron Scattering and the MX1 and MX2 beamlines at the Australian Synchrotron (using the Australian Cancer Research Foundation (ACRF) detector), both part of ANSTO.en_AU
dc.format.mediumPrint-Electronicen_AU
dc.identifier.citationReed, W. R., Dunstan, M. A., Gable, R. W., Phonsri, W., Murray, K. S., Mole, R. A., & Boskovic, C. (2019). Tetraoxolene-bridged rare-earth complexes: a radical-bridged dinuclear Dy single-molecule magnet. Dalton Transactions, 48(41), 15635-15645. doi:10.1039/C9DT01320Ben_AU
dc.identifier.issn1477-9226en_AU
dc.identifier.issn1477-9234en_AU
dc.identifier.issue41en_AU
dc.identifier.journaltitleDalton Transactionsen_AU
dc.identifier.pagination15635-15645en_AU
dc.identifier.urihttps://doi.org/10.1039/c9dt01320ben_AU
dc.identifier.urihttps://apo.ansto.gov.au/handle/10238/15802en_AU
dc.identifier.volume48en_AU
dc.languageEnglishen_AU
dc.language.isoenen_AU
dc.publisherRoyal Society of Chemistryen_AU
dc.subjectMoleculesen_AU
dc.subjectMagnetsen_AU
dc.subjectRare earthsen_AU
dc.subjectSynthesisen_AU
dc.subjectMagnetic fieldsen_AU
dc.subjectElectrochemistryen_AU
dc.subjectLigandsen_AU
dc.subjectRaman spectroscopyen_AU
dc.titleTetraoxolene-bridged rare-earth complexes: a radical-bridged dinuclear Dy single-molecule magneten_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.66 KB
Format:
Plain Text
Description:
Collections