Organic monolayers on Si(211) for triboelectricity generation: etching optimization and relationship between the electrochemistry and current output
dc.contributor.author | Hurtado, C | en_AU |
dc.contributor.author | Lyu, X | en_AU |
dc.contributor.author | Ferrie, S | en_AU |
dc.contributor.author | Le Brun, AP | en_AU |
dc.contributor.author | MacGregor, M | en_AU |
dc.contributor.author | Ciampi, S | en_AU |
dc.date.accessioned | 2024-08-25T23:42:29Z | en_AU |
dc.date.available | 2024-08-25T23:42:29Z | en_AU |
dc.date.issued | 2022-09-28 | en_AU |
dc.date.statistics | 2024-08-26 | en_AU |
dc.description.abstract | Triboelectric nanogenerators (TENGs) based on sliding silicon-organic monolayer-metal Schottky diodes are an emerging autonomous direct-current (DC) current supply technology. Herein, using conductive atomic force microscopy and electrochemical techniques, we explore the optimal etching conditions toward the preparation of DC TENGs on Si(211), a readily available, highly conductive, and underexplored silicon crystallographic cut. We report optimized conditions for the chemical etching of Si(211) surfaces with subnanometer root-mean-square roughness, explore Si(211) chemical passivation, and unveil a relationship between the electrochemical charge-transfer behavior at the silicon-liquid interface and the zero-applied bias current output from the corresponding dynamic silicon-organic monolayer-platinum system. The overall aim is to optimize the etching and functionalization of the relatively underexplored Si(211) facet, toward its application in out-of-equilibrium Schottky diodes as autonomous power supplies. We also propose the electrochemical behavior of surface-confined redox couples as a diagnostic tool to anticipate whether or not a given surface will perform satisfactorily when used in a TENG design. © 2022 American Chemical Society | en_AU |
dc.description.sponsorship | This work was financially supported by the Australian Research Council (Grants DP190100735, FT190100148, and FT200100301). The authors acknowledge the instruments and expertise of Microscopy Australia at the Future Industries Institute, University of South Australia, enabled by NCRIS, university, and state government support. | en_AU |
dc.identifier.citation | Hurtado, C., Lyu, X., Ferrie, S., Le Brun, A. P., MacGregor, M., & Ciampi, S. (2022). Organic monolayers on Si(211) for triboelectricity generation: etching optimization and relationship between the electrochemistry and current output ACS Applied Nano Materials, 5(10), 14263-14274. doi:10.1021/acsanm.2c02006 | en_AU |
dc.identifier.issn | 2574-0970 | en_AU |
dc.identifier.issue | 10 | en_AU |
dc.identifier.journaltitle | ACS Applied Nano Materials | en_AU |
dc.identifier.pagination | 14263-14274 | en_AU |
dc.identifier.uri | http://dx.doi.org/10.1021/acsanm.2c02006 | en_AU |
dc.identifier.uri | https://apo.ansto.gov.au/handle/10238/15667 | en_AU |
dc.identifier.volume | 5 | en_AU |
dc.language | English | en_AU |
dc.language.iso | en | en_AU |
dc.publisher | American Chemical Society | en_AU |
dc.subject | Electrodes | en_AU |
dc.subject | Etching | en_AU |
dc.subject | Silicon | en_AU |
dc.subject | Atomic force microscopy | en_AU |
dc.subject | Electrochemistry | en_AU |
dc.subject | Passivation | en_AU |
dc.subject | Schottky barrier diodes | en_AU |
dc.subject | Redox process | en_AU |
dc.title | Organic monolayers on Si(211) for triboelectricity generation: etching optimization and relationship between the electrochemistry and current output | en_AU |
dc.type | Journal Article | en_AU |