High‐voltage‐driven surface structuring and electrochemical stabilization of Ni‐rich layered cathode materials for Li rechargeable batteries

dc.contributor.authorSong, SHen_AU
dc.contributor.authorCho, Men_AU
dc.contributor.authorPark, Ien_AU
dc.contributor.authorYoo, JGen_AU
dc.contributor.authorKo, KTen_AU
dc.contributor.authorHong, Jen_AU
dc.contributor.authorKim, Jen_AU
dc.contributor.authorJung, SKen_AU
dc.contributor.authorAvdeev, Men_AU
dc.contributor.authorJi, Sen_AU
dc.contributor.authorLee, Sen_AU
dc.contributor.authorBang, Jen_AU
dc.contributor.authorKim, Hen_AU
dc.date.accessioned2021-03-18T06:51:42Zen_AU
dc.date.available2021-03-18T06:51:42Zen_AU
dc.date.issued2020-05-04en_AU
dc.date.statistics2021-03-16en_AU
dc.description.abstractLayered lithium–nickel–cobalt–manganese oxide (NCM) materials have emerged as promising alternative cathode materials owing to their high energy density and electrochemical stability. Although high reversible capacity has been achieved for Ni‐rich NCM materials when charged beyond 4.2 V versus Li+/Li, full lithium utilization is hindered by the pronounced structural degradation and electrolyte decomposition. Herein, the unexpected realization of sustained working voltage as well as improved electrochemical performance upon electrochemical cycling at a high operating voltage of 4.9 V in the Ni‐rich NCM LiNi0.895Co0.085Mn0.02O2 is presented. The improved electrochemical performance at a high working voltage at 4.9 V is attributed to the removal of the resistive Ni2+O rock‐salt surface layer, which stabilizes the voltage profile and improves retention of the energy density during electrochemical cycling. The manifestation of the layered Ni2+O rock‐salt phase along with the structural evolution related to the metal dissolution are probed using in situ X‐ray diffraction, neutron diffraction, transmission electron microscopy, and X‐ray absorption spectroscopy. The findings help unravel the structural complexities associated with high working voltages and offer insight for the design of advanced battery materials, enabling the realization of fully reversible lithium extraction in Ni‐rich NCM materials. © 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheimen_AU
dc.identifier.articlenumber2000521en_AU
dc.identifier.citationSong, S. H., Cho, M., Park, I., Yoo, J.- G., Ko, K.- T., Hong, J., Kim, J., Jung, S.- K., Avdeev, M., Ji, S., Lee, S., Bang, J., & Kim, H. (2020). High‐voltage‐driven surface structuring and electrochemical stabilization of Ni‐rich layered cathode materials for Li rechargeable batteries. Advanced Energy Materials, 10(23), 2000521. doi:10.1002/aenm.202000521en_AU
dc.identifier.issn1614-6840en_AU
dc.identifier.issue23en_AU
dc.identifier.journaltitleAdvanced Energy Materialsen_AU
dc.identifier.urihttps://doi.org/10.1002/aenm.202000521en_AU
dc.identifier.urihttps://apo.ansto.gov.au/dspace/handle/10238/10570en_AU
dc.identifier.volume10en_AU
dc.language.isoenen_AU
dc.publisherWileyen_AU
dc.subjectLithium ion batteriesen_AU
dc.subjectCathodesen_AU
dc.subjectDissolutionen_AU
dc.subjectNeutron diffractionen_AU
dc.subjectX-ray diffractionen_AU
dc.subjectTransmission electron microscopyen_AU
dc.subjectElectrochemistryen_AU
dc.titleHigh‐voltage‐driven surface structuring and electrochemical stabilization of Ni‐rich layered cathode materials for Li rechargeable batteriesen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections