Lowering the energetic landscape for negative thermal expansion in 3D-linker metal–organic frameworks

dc.contributor.authorChen, Cen_AU
dc.contributor.authorMaynard-Casley, HEen_AU
dc.contributor.authorDuyker, SGen_AU
dc.contributor.authorBarbarao, Ren_AU
dc.contributor.authorKepert, CJen_AU
dc.contributor.authorEvans, JDen_AU
dc.contributor.authorMacreadie, LKen_AU
dc.date.accessioned2024-01-19T05:25:54Zen_AU
dc.date.available2024-01-19T05:25:54Zen_AU
dc.date.issued2023-11-30en_AU
dc.date.statistics2024-01-19en_AU
dc.descriptionPreprint retrieved from https://chemrxiv.org/engage/chemrxiv/article-details/643f9bcf83fa35f8f6e44137en_AU
dc.description.abstractTuning the coefficient of thermal expansion (CTE) of functional materials is paramount for their practical implementation. The multicomponent nature of metal–organic frameworks (MOFs) offers an opportunity to finely adjust negative thermal expansion (NTE) properties by varying the metal ions and linkers used. We describe a new strategy to adjust the NTE by using organic linkers that include additional rotational degrees of freedom. Specifically, we employ cubane-1,4-dicarboxylate and bicyclo[1.1.1]pentane-1,3-dicarboxylate to form the MOFs CUB-5 and 3DL-MOF-1, respectively, where each linker has low torsional energy barriers. The core of these nonconjugated linkers is decoupled from the carboxylate functionalities, which frees the relative movement of these components. This results in enhanced NTE compared to the analogous, conjugated system; VT-PXRD results were used to calculate the CTE for 3DL-MOF-1 (αL = −13.9(2) × 10–6 K–1), and CUB-5 (αL = −14.7(3) × 10–6 K–1), which is greater than the NTE of MOF-5 (αL = −13.1(1) × 10–6 K–1). These results identify a new route to enhanced NTE behaviors in IRMOF materials influenced by low energy molecular torsion of the linker. © American Chemical Societyen_AU
dc.description.sponsorshipLKM acknowledges ARC DE210101627 and AINSE 2020 ECRG; JDE acknowledges DE220100163. CJK DP190103130; RB acknowledge the National Computing Infrastructure (NCI) for the computational resources. ANSTO for provision of neutron scattering time DB3295. The authors acknowledge the facilities and the scientific and technical assistance of Sydney Analytical, a core research facility at The University of Sydney. Phoenix HPC service at the University of Adelaide is thanked for providing high performance computing resources. This project was undertaken with the assistance of resources and services from the National Computational Infrastructure (NCI), which is supported by the Australian Government.en_AU
dc.identifier.citationChen, C., Maynard-Casely, H. E., Duyker, S. G., Babarao, R., Kepert, C. J., Evans, J. D., & Macreadie, L. K. (2023). Lowering the energetic landscape for negative thermal expansion in 3D-linker metal–organic frameworks, 35(23), 9945-9951. doi:10.1021/acs.chemmater.3c01744en_AU
dc.identifier.issn0897-4756en_AU
dc.identifier.issue23en_AU
dc.identifier.journaltitleChemistry of Materialsen_AU
dc.identifier.pagination9945-9951en_AU
dc.identifier.urihttps://chemrxiv.org/engage/chemrxiv/article-details/643f9bcf83fa35f8f6e44137en_AU
dc.identifier.urihttps://apo.ansto.gov.au/handle/10238/15364en_AU
dc.identifier.volume35en_AU
dc.language.isoenen_AU
dc.publisherACS Publicationsen_AU
dc.relation.urihttps://doi.org/10.1021/acs.chemmater.3c01744en_AU
dc.subjectThermal expansionen_AU
dc.subjectMetalsen_AU
dc.subjectMaterialsen_AU
dc.subjectTorsionen_AU
dc.subjectRotational Statesen_AU
dc.subjectTemperature rangeen_AU
dc.subjectDiffractionen_AU
dc.titleLowering the energetic landscape for negative thermal expansion in 3D-linker metal–organic frameworksen_AU
dc.typeJournal Articleen_AU
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
lowering-the-energetic-landscape-for-negative-thermal-expansion-in-3dl-mo-fs.pdf
Size:
3.12 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections