Mechanically robust nitrogen-rich plasma polymers: biofunctional interfaces for surface engineering of biomedical implants

dc.contributor.authorSharifahmadian, Oen_AU
dc.contributor.authorZhai, Cen_AU
dc.contributor.authorHung, Jen_AU
dc.contributor.authorShineh, Gen_AU
dc.contributor.authorStewart, CACen_AU
dc.contributor.authorFadzil, AAen_AU
dc.contributor.authorIonescu, Men_AU
dc.contributor.authorGan, Yen_AU
dc.contributor.authorWise, SGen_AU
dc.contributor.authorAkhavan, Ben_AU
dc.date.accessioned2025-02-13T03:06:07Zen_AU
dc.date.available2025-02-13T03:06:07Zen_AU
dc.date.issued2021-12en_AU
dc.date.statistics2025-02-12en_AU
dc.description.abstractSurface bio-functionalization through covalent attachment of bioactive molecules is a promising approach to facilitate rapid bone-implant integration. Radical-rich plasma polymer interlayers are highly attractive as platforms that enable covalent biofunctionalization in a single-step, reagent-free manner. However, fabrication of mechanically robust plasma polymer films, particularly for biomedical devices that operate in corrosive body fluids, is not trivial. Here we show a facile approach to tune the robustness of ion-assisted plasma polymer (IPP) films via simply varying the nitrogen atomic concentration incorporated into their structure. X-ray photoelectron spectroscopy data indicated that the total sp3/sp2 ratio of carbon atoms decreases in the films with increasing nitrogen atomic concentration. Electron recoil detection analysis data provided evidence that the hydrogen content decreases as the nitrogen atomic concentration increases. Nano-indentation and nano-scratch tests, together with long-term stability studies in simulated body fluid, showed a strong correlation between the nitrogen atomic concentration and the robustness and stability of the films. We confirmed the potential of the optimized, nitrogen-rich IPP film to regulate osseointegration by covalent attachment of fibronectin followed by quantifying primary osteoblast attachment and proliferation. The IPP films developed here hold great potential as robust interfaces for biomimetic surface engineering of implantable biomedical devices, in particular bone implants. © 2021 The Authors. Published by Elsevier Ltd.en_AU
dc.description.sponsorshipWe would like to thank Professor Marcela Bilek for her valuable contributions in the conceptualisation of the project as well as on-going support throughout the work and editing of the manuscript. We gratefully acknowledge funding from the Australian Research Council (FT120100226; FL190100216; DP130103693; DP190103507; DE210100662).en_AU
dc.identifier.articlenumber100188en_AU
dc.identifier.citationSharifahmadian, O., Zhai, C., Hung, J., Shineh, G., Stewart, C. A. C., Fadzil, A. A., Ionescu, M., Gan, Y., Wise, S. G., & Akhavan, B. (2021). Mechanically robust nitrogen-rich plasma polymers: biofunctional interfaces for surface engineering of biomedical implants. Materials Today Advances, 12, 100188. doi:10.1016/j.mtadv.2021.100188en_AU
dc.identifier.issn2590-0498en_AU
dc.identifier.journaltitleMaterials Today Advancesen_AU
dc.identifier.urihttps://doi.org/10.1016/j.mtadv.2021.100188en_AU
dc.identifier.urihttps://apo.ansto.gov.au/handle/10238/15980en_AU
dc.identifier.volume12en_AU
dc.languageEnglishen_AU
dc.language.isoenen_AU
dc.publisherElsevieren_AU
dc.subjectNitrogenen_AU
dc.subjectPolymersen_AU
dc.subjectSpectroscopyen_AU
dc.subjectX-ray photoelectron spectroscopyen_AU
dc.subjectElectronsen_AU
dc.subjectFilmsen_AU
dc.subjectProliferationen_AU
dc.subjectBone jointsen_AU
dc.subjectImplantsen_AU
dc.subjectTitaniumen_AU
dc.subjectPlasmaen_AU
dc.titleMechanically robust nitrogen-rich plasma polymers: biofunctional interfaces for surface engineering of biomedical implantsen_AU
dc.typeJournal Articleen_AU
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
1-s2.0-S2590049821000588-main.pdf
Size:
5.76 MB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
1-s2.0-S2590049821000588-mmc1.docx
Size:
129.6 KB
Format:
Microsoft Word XML
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.66 KB
Format:
Plain Text
Description:
Collections