Austenite formation kinetics from multicomponent cementite-ferrite aggregates by in situ neutron powder diffraction

dc.contributor.authorWu, Yen_AU
dc.contributor.authorWang, Len_AU
dc.contributor.authorSun, Wen_AU
dc.contributor.authorStyles, MJen_AU
dc.contributor.authorStuder, AJen_AU
dc.contributor.authorBrechet, Yen_AU
dc.contributor.authorHutchinson, Cen_AU
dc.date.accessioned2023-05-04T22:44:42Zen_AU
dc.date.available2023-05-04T22:44:42Zen_AU
dc.date.issued2020-11-11en_AU
dc.date.statistics2023-04-24en_AU
dc.description.abstractThe development of third generation advanced high strength steels (AHSS) as the next generation sheet steel grade is driven by the automotive industry. The key processing step is called ‘intercritical annealing’ at temperatures in the region of the ferrite and austenite two-phase field. The transformed austenite during intercritical annealing will be retained at a metastable state in the final microstructure. Controlling the fraction and chemistry of austenite and resulting mechanical properties is critical for many AHSS. The kinetics of austenite formation depend sensitively on the initial microstructure and annealing conditions. In this talk, we will present detailed kinetic studies of austenite formation from cementite-ferrite aggregate in a range of AHSS grades via in situ neutron powder diffraction at WOMBAT. The quantitative phase analyses highlight that the saturation of transformation kinetics in relation to global equilibrium is affected by the competition between different interface migration. Depending on the relative contribution of cementite dissolution in respect to migrating interface of austenite/ferrite, the incomplete dissolution of enveloped cementite limited by slow diffusion in austenite could result in austenite plateauing below equilibrium, while fast dissolution of matrix cementite could result in austenite plateau above equilibrium. Both contributions need to be considered and modelled to describe the austenite formation kinetics. The experimental and computational work in this contribution would guide future processing and alloy design of AHSS.en_AU
dc.identifier.citationWu, Y., Wang, L., Sun., W., Styles, M., Studer, A., Brechet, Y., & Hutchinson, C. (2020). Austenite formation kinetics from multicomponent cementite-ferrite aggregates by in situ neutron powder diffraction. Paper presented to the ANBUG-AINSE Neutron Scattering Symposium, AANSS 2020, Virtual Meeting, 11th - 13th November 2020, (pp. 52). Retrieved from: https://events01.synchrotron.org.au/event/125/attachments/725/1149/AANSS_Abstract_Booklet_Complete_-_1_Page_Reduced.pdfen_AU
dc.identifier.conferenceenddate13 November 2020en_AU
dc.identifier.conferencenameANBUG-AINSE Neutron Scattering Symposium, AANSS 2020en_AU
dc.identifier.conferenceplaceVirtual Meetingen_AU
dc.identifier.conferencestartdate11 November 2020en_AU
dc.identifier.pagination52en_AU
dc.identifier.urihttps://events01.synchrotron.org.au/event/125/contributions/3754/contribution.pdfen_AU
dc.identifier.urihttps://apo.ansto.gov.au/dspace/handle/10238/14985en_AU
dc.language.isoenen_AU
dc.publisherAustralian Institute of Nuclear Science and Engineering (AINSE)en_AU
dc.subjectAusteniteen_AU
dc.subjectKineticsen_AU
dc.subjectFerriteen_AU
dc.subjectAnnealingen_AU
dc.subjectAgglomerationen_AU
dc.subjectSaturationen_AU
dc.subjectMoistureen_AU
dc.subjectMigrationen_AU
dc.subjectDissolutionen_AU
dc.subjectMicrostructureen_AU
dc.titleAustenite formation kinetics from multicomponent cementite-ferrite aggregates by in situ neutron powder diffractionen_AU
dc.typeConference Abstracten_AU
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
contribution (26).pdf
Size:
34.82 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description: