A highly efficient and informative method to identify ion transport networks in fast ion conductors

dc.contributor.authorHe, Ben_AU
dc.contributor.authorMi, PHen_AU
dc.contributor.authorYe, AJen_AU
dc.contributor.authorChi, STen_AU
dc.contributor.authorJiao, Yen_AU
dc.contributor.authorZhang, LWen_AU
dc.contributor.authorPu, BWen_AU
dc.contributor.authorZou, Zen_AU
dc.contributor.authorZhang, WQen_AU
dc.contributor.authorAvdeev, Men_AU
dc.contributor.authorAdams, Sen_AU
dc.contributor.authorZhao, JTen_AU
dc.contributor.authorShi, Sen_AU
dc.date.accessioned2021-09-13T21:49:21Zen_AU
dc.date.available2021-09-13T21:49:21Zen_AU
dc.date.issued2021-01-15en_AU
dc.date.statistics2021-09-07en_AU
dc.description.abstractHigh-throughput analysis of the ion transport pathways is critical for screening fast ion conductors. Currently, empirical methods, such as the geometric analysis and bond valence site energy (BVSE) methods, are respectively used for the task. Geometric analysis method can only extract geometric and topological pathway properties without considering the interatomic interactions, while the BVSE method alone does not yield a geometric classification of the sites and interstices forming the pathway. Herein, we propose a highly efficient and informative method to identify interstices and connecting segments constructing an ion transport network by combining topological pathway network and BVSE landscape, which enables to obtain both the geometry and energy profiles of nonequivalent ion transport pathways between adjacent lattice sites. These pathways can be further used as the input for first-principles nudged elastic band calculations with automatically generated chains of images. By performing high-throughput screening of 48,321 Li-, Na-, Mg- and Al-containing ionic compounds from the Inorganic Crystal Structure Database based on the filter combining geometric analysis and BVSE methods, we obtain 1,270 compounds with connected ionic migration pathways of suitable sizes and low migration energy barriers, which include both previously reported fast ion conductors, and new promising materials to be explored further. © 2020 Acta Materialia Inc. Published by Elsevier Ltd.en_AU
dc.identifier.articlenumber116490en_AU
dc.identifier.citationHe, B., Mi, P., Ye, A., Chi, S., Jiao, Y., Zhang, L., Pu, B., Zou, Z., Zhang, W., Avdeev, M., Adams, S., Zhao, J., & Shi, S. (2021). A highly efficient and informative method to identify ion transport networks in fast ion conductors. Acta Materialia, 203, 116490. doi:10.1016/j.actamat.2020.116490en_AU
dc.identifier.issn1359-6454en_AU
dc.identifier.journaltitleActa Materialiaen_AU
dc.identifier.urihttps://doi.org/10.1016/j.actamat.2020.116490en_AU
dc.identifier.urihttps://apo.ansto.gov.au/dspace/handle/10238/11676en_AU
dc.identifier.volume203en_AU
dc.language.isoenen_AU
dc.publisherElsevieren_AU
dc.subjectCrystal structureen_AU
dc.subjectValenceen_AU
dc.subjectTopological mappingen_AU
dc.subjectIonic compositionen_AU
dc.subjectElectric conductorsen_AU
dc.subjectElectric batteriesen_AU
dc.titleA highly efficient and informative method to identify ion transport networks in fast ion conductorsen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections