Direct evidence for the spin cycloid in strained nanoscale bismuth ferrite thin films

dc.contributor.authorBertinshaw, Jen_AU
dc.contributor.authorMaran, Ren_AU
dc.contributor.authorCallori, SJen_AU
dc.contributor.authorRamesh, Ven_AU
dc.contributor.authorCheung, Jen_AU
dc.contributor.authorDainlkin, SAen_AU
dc.contributor.authorLee, WTen_AU
dc.contributor.authorHu, Sen_AU
dc.contributor.authorSeidel, Jen_AU
dc.contributor.authorValanoor, Nen_AU
dc.contributor.authorUlrich, Cen_AU
dc.date.accessioned2022-08-29T22:44:41Zen_AU
dc.date.available2022-08-29T22:44:41Zen_AU
dc.date.issued2017-01-31en_AU
dc.date.statistics2021-10-11en_AU
dc.description.abstractMultiferroic materials demonstrate excellent potential for next-generation multifunctional devices, as they exhibit coexisting ferroelectric and magnetic orders. Bismuth ferrite (BiFeO3) is a rare exemption where both order parameters exist far beyond room temperature, making it the ideal candidate for technological applications. In particular, magnonic devices that utilize electric control of spin waves mediated by complex spin textures are an emerging direction in spintronics research. To realize magnonic devices, a robust long-range spin cycloid with well known direction is desired, since it is a prerequisite for the magnetoelectric coupling. Despite extensive investigation, the stabilization of a large-scale uniform spin cycloid in nanoscale (100 nm) thin BiFeO3 films has not been accomplished. Here, we demonstrate cycloidal spin order in 100 nm BiFeO3 thin films through the careful choice of crystallographic orientation, and control of the electrostatic and strain boundary conditions during growth [1]. Neutron diffraction, in conjunction with X-ray diffraction, reveals an incommensurate spin cycloid with a unique [112] propagation direction. While this direction is different from bulk BiFeO3, the cycloid length and Néel temperature remain equivalent to bulk single crystals. The discovery of a large scale uniform cycloid in thin film BiFeO3 opens new avenues for fundamental research and technical applications that exploit the spin cycloid in spintronic or magnonic devices.en_AU
dc.identifier.citationBertinshaw, J., Maran, R., Callori, S. J., Ramesh, V., Cheung, J., Danilkin, S. A., Lee, W. T., Hu, S., Seidel, J., Valanoor, N., & Ulrich, C. (2017). Direct evidence for the spin cycloid in strained nanoscale bismuth ferrite thin films. Poster presented to the 41st Annual Condensed Matter and Materials Meeting, 31st January - 3rd February 2017 Charles Sturt University Wagga Wagga, NSW, Australia. (pp. 79). Retrieved from: https://physics.org.au/wp-content/uploads/cmm/2017/Wagga_2017_Conference_Handbook.pdfen_AU
dc.identifier.conferenceenddate3 February 2017en_AU
dc.identifier.conferencename41st Annual Condensed Matter and Materials Meetingen_AU
dc.identifier.conferenceplaceWagga Wagga, NSWen_AU
dc.identifier.conferencestartdate31 January 2017en_AU
dc.identifier.otherTP3en_AU
dc.identifier.pagination79en_AU
dc.identifier.urihttps://physics.org.au/wp-content/uploads/cmm/2017/Wagga_2017_Conference_Handbook.pdfen_AU
dc.identifier.urihttps://apo.ansto.gov.au/dspace/handle/10238/13660en_AU
dc.language.isoenen_AU
dc.publisherAustralian Institute of Physicsen_AU
dc.subjectSpinen_AU
dc.subjectBismuthen_AU
dc.subjectFerriteen_AU
dc.subjectThin filmsen_AU
dc.subjectMaterialsen_AU
dc.subjectOrder parametersen_AU
dc.subjectAmbient temperatureen_AU
dc.subjectSpin wavesen_AU
dc.subjectMagnonsen_AU
dc.subjectNeel temperatureen_AU
dc.titleDirect evidence for the spin cycloid in strained nanoscale bismuth ferrite thin filmsen_AU
dc.typeConference Posteren_AU
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Wagga_2017_Conference_Handbook.pdf
Size:
11.03 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description: