Deuteration of non-labile protium in starch: biosynthesis and characterisation from yeast-derived starch granules

dc.contributor.authorRussell, RAen_AU
dc.contributor.authorCaruana, Len_AU
dc.contributor.authorYepuri, NRen_AU
dc.contributor.authorOldfield, DTen_AU
dc.contributor.authorNguyen, THen_AU
dc.contributor.authorRawal, Aen_AU
dc.contributor.authorGilbert, EPen_AU
dc.date.accessioned2025-03-06T04:12:15Zen_AU
dc.date.available2025-03-06T04:12:15Zen_AU
dc.date.issued2024-11-01en_AU
dc.date.statistics2025-02-26en_AU
dc.description.abstractDeuterium labelling of the non-labile protium atoms in starch granules has been achieved for the first time, by growing genetically modified yeast on deuterated media. Mass spectrometry of the glucose monomers from digested starch showed 44 % average deuteration of the non-labile protium when grown on partially deuterated raffinose (with average deuteration 48 %); yielding starch with 26 % average overall deuteration. Non-labile deuteration was also demonstrated using D2O solvent in the culture medium. Solid-state NMR revealed that deuteration was not evenly distributed across the monomer, being highest at the C6 carbon and lowest at the C1 carbon. SANS revealed two structural features at q = 0.05 Å−1 and 0.4 Å−1, the first corresponding to a lamellar repeat of approximately 12–13 nm while the latter is consistent with B-type crystalline polymer packing. Furthermore, solvent contrast variation SANS analysis yielded a contrast match point of 66 mol% D2O indicative of approximately 30–35 % average deuteration of the bulk granules, consistent with mass spectroscopy. When coupled with the more traditional process of exchange of labile protium in the hydroxyl groups by D2O solvent exchange, the biosynthesis of highly deuterated starch opens new opportunities for neutron scattering experiments involving multicomponent starch-based systems. © 2024 Published by Elsevier Ltd.en_AU
dc.description.sponsorshipS. cerevisiae strain 29 for starch granule synthesis was kindly provided by Barbara Pfister (ETH Zürich, Switzerland). The National Deuteration Facility at the Australian Nuclear Science and Technology Organisation (ANSTO) Australia is partly funded by The National Collaborative Research Infrastructure Strategy (NCRIS), an Australian Government initiative. The neutron beam time and access to the QUOKKA SANS facility was awarded by ANSTO under research proposal P9150.en_AU
dc.format.mediumPrint-Electronicen_AU
dc.identifier.articlenumber122452en_AU
dc.identifier.citationRussell, R. A., Caruana, L., Yepuri, N. R., Oldfield, D., Nguyen, T. H., Rawal, A., & Gilbert, E. P. (2024). Deuteration of non-labile protium in starch: Biosynthesis and characterisation from yeast-derived starch granules. Carbohydrate Polymers, 343, 122452. doi:10.1016/j.carbpol.2024.122452en_AU
dc.identifier.issn0144-8617en_AU
dc.identifier.issn1879-1344en_AU
dc.identifier.journaltitleCarbohydrate Polymersen_AU
dc.identifier.urihttps://doi.org/10.1016/j.carbpol.2024.122452en_AU
dc.identifier.urihttps://apo.ansto.gov.au/handle/10238/16022en_AU
dc.identifier.volume343en_AU
dc.languageEnglishen_AU
dc.language.isoenen_AU
dc.publisherElsevieren_AU
dc.subjectBiosynthesisen_AU
dc.subjectYeastsen_AU
dc.subjectAtomsen_AU
dc.subjectNeutron diffractionen_AU
dc.subjectSpectroscopyen_AU
dc.subjectCarbonen_AU
dc.subjectGlucoseen_AU
dc.subjectStarchen_AU
dc.subjectDeuterationen_AU
dc.subjectSmall angle scatteringen_AU
dc.subjectNuclear magnetic momentsen_AU
dc.subjectRaffinoseen_AU
dc.titleDeuteration of non-labile protium in starch: biosynthesis and characterisation from yeast-derived starch granulesen_AU
dc.typeJournal Articleen_AU
dcterms.dateAccepted2024-06-29en_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.66 KB
Format:
Plain Text
Description:
Collections