Solid-state chemistry shuffling of alkali ions toward new layered oxide materials
dc.contributor.author | Mpanga, EM | en_AU |
dc.contributor.author | Wernert, R | en_AU |
dc.contributor.author | Fauth, F | en_AU |
dc.contributor.author | Suard, E | en_AU |
dc.contributor.author | Avdeev, M | en_AU |
dc.contributor.author | Fraisse, B | en_AU |
dc.contributor.author | Camacho, PS | en_AU |
dc.contributor.author | Carlier, D | en_AU |
dc.contributor.author | Lebedev, O | en_AU |
dc.contributor.author | Cassidy, SJ | en_AU |
dc.contributor.author | Rousse, G | en_AU |
dc.contributor.author | Berthelot, R | en_AU |
dc.date.accessioned | 2024-08-22T05:47:38Z | en_AU |
dc.date.available | 2024-08-22T05:47:38Z | en_AU |
dc.date.issued | 2024-01-09 | en_AU |
dc.date.statistics | 2024-04-11 | en_AU |
dc.description.abstract | Alkali transition-metal layered compounds usually contain only one type of alkali cation between the edge-shared octahedra layers. Herein, the ternary phase diagram A2Ni2TeO6 (A = Li, Na, K) was explored through solid-state synthesis and new alkali-mixed compositions showing alternation of distinct alkali layers are obtained. Such intergrowth structures are synthesized either by a single high-temperature treatment from raw chemicals or through reaction between layered precursors, the latter involving a solid-state process triggered at moderate temperatures. The in-depth characterization of the multiple cationic orderings is performed by combining powder diffraction techniques (X-rays and neutrons), high-resolution transmission electron microscopy, and solid-state NMR spectroscopy. In addition to the Ni/Te honeycomb ordering, alternation of lithium layers with sodium or potassium layers is observed for compositions (Li/Na)2Ni2TeO6 or (Li/K)2Ni2TeO6, respectively. Crystal structure solving was achieved by stacking building blocks of the respective single alkali layered oxides and unveiled a complex out-of-plane ordering of honeycomb layers. Moreover, a solid-state reaction between Li2Ni2TeO6 and NaKNi2TeO6 enables preparation of the new phase Li∼1Na∼0.5K∼0.5Ni2TeO6, a unique example containing up to three alkali cations and exhibiting a more complex stacking with sodium and potassium cations occupying the same layer. This investigation confirms that the chemical versatility of layered alkali transition-metal compounds could also occur on the alkali layer. Following the research methodology described here, we revisit the crystal chemistry of alkali transition-metal layered materials by exploring alkali ion substitutions previously thought infeasible, in order to find new alkali-mixed compositions. © 2024 American Chemical Society. | en_AU |
dc.identifier.citation | Mpanga, E. M., Wernert, R., Fauth, F., Suard, E., Avdeev, M., Fraisse, B., Camacho, P. S., Carlier, D., Lebedev, O., Cassidy, S. J., Rousse, G., & Berthelot, R. (2024). Solid-state chemistry shuffling of alkali ions toward new layered oxide materials. Chemistry of Materials, 36(2), 892-900. doi:10.1021/acs.chemmater.3c02749 | en_AU |
dc.identifier.issn | 0897-4756 | en_AU |
dc.identifier.issn | 1520-5002 | en_AU |
dc.identifier.issue | 2 | en_AU |
dc.identifier.journaltitle | Chemistry of Materials | en_AU |
dc.identifier.pagination | 892-900 | en_AU |
dc.identifier.uri | https://doi.org/10.1021/acs.chemmater.3c02749 | en_AU |
dc.identifier.uri | https://apo.ansto.gov.au/handle/10238/15664 | en_AU |
dc.identifier.volume | 36 | en_AU |
dc.language | English | en_AU |
dc.language.iso | en | en_AU |
dc.publisher | American Chemical Society | en_AU |
dc.subject | Alkali metals | en_AU |
dc.subject | Alkali metal compounds | en_AU |
dc.subject | Lithium | en_AU |
dc.subject | Oxide minerals | en_AU |
dc.subject | Crystal structure | en_AU |
dc.subject | Sodium | en_AU |
dc.subject | Potassium | en_AU |
dc.subject | Cations | en_AU |
dc.subject | Layers | en_AU |
dc.title | Solid-state chemistry shuffling of alkali ions toward new layered oxide materials | en_AU |
dc.type | Journal Article | en_AU |