Solid-state chemistry shuffling of alkali ions toward new layered oxide materials

dc.contributor.authorMpanga, EMen_AU
dc.contributor.authorWernert, Ren_AU
dc.contributor.authorFauth, Fen_AU
dc.contributor.authorSuard, Een_AU
dc.contributor.authorAvdeev, Men_AU
dc.contributor.authorFraisse, Ben_AU
dc.contributor.authorCamacho, PSen_AU
dc.contributor.authorCarlier, Den_AU
dc.contributor.authorLebedev, Oen_AU
dc.contributor.authorCassidy, SJen_AU
dc.contributor.authorRousse, Gen_AU
dc.contributor.authorBerthelot, Ren_AU
dc.date.accessioned2024-08-22T05:47:38Zen_AU
dc.date.available2024-08-22T05:47:38Zen_AU
dc.date.issued2024-01-09en_AU
dc.date.statistics2024-04-11en_AU
dc.description.abstractAlkali transition-metal layered compounds usually contain only one type of alkali cation between the edge-shared octahedra layers. Herein, the ternary phase diagram A2Ni2TeO6 (A = Li, Na, K) was explored through solid-state synthesis and new alkali-mixed compositions showing alternation of distinct alkali layers are obtained. Such intergrowth structures are synthesized either by a single high-temperature treatment from raw chemicals or through reaction between layered precursors, the latter involving a solid-state process triggered at moderate temperatures. The in-depth characterization of the multiple cationic orderings is performed by combining powder diffraction techniques (X-rays and neutrons), high-resolution transmission electron microscopy, and solid-state NMR spectroscopy. In addition to the Ni/Te honeycomb ordering, alternation of lithium layers with sodium or potassium layers is observed for compositions (Li/Na)2Ni2TeO6 or (Li/K)2Ni2TeO6, respectively. Crystal structure solving was achieved by stacking building blocks of the respective single alkali layered oxides and unveiled a complex out-of-plane ordering of honeycomb layers. Moreover, a solid-state reaction between Li2Ni2TeO6 and NaKNi2TeO6 enables preparation of the new phase Li∼1Na∼0.5K∼0.5Ni2TeO6, a unique example containing up to three alkali cations and exhibiting a more complex stacking with sodium and potassium cations occupying the same layer. This investigation confirms that the chemical versatility of layered alkali transition-metal compounds could also occur on the alkali layer. Following the research methodology described here, we revisit the crystal chemistry of alkali transition-metal layered materials by exploring alkali ion substitutions previously thought infeasible, in order to find new alkali-mixed compositions. © 2024 American Chemical Society.en_AU
dc.identifier.citationMpanga, E. M., Wernert, R., Fauth, F., Suard, E., Avdeev, M., Fraisse, B., Camacho, P. S., Carlier, D., Lebedev, O., Cassidy, S. J., Rousse, G., & Berthelot, R. (2024). Solid-state chemistry shuffling of alkali ions toward new layered oxide materials. Chemistry of Materials, 36(2), 892-900. doi:10.1021/acs.chemmater.3c02749en_AU
dc.identifier.issn0897-4756en_AU
dc.identifier.issn1520-5002en_AU
dc.identifier.issue2en_AU
dc.identifier.journaltitleChemistry of Materialsen_AU
dc.identifier.pagination892-900en_AU
dc.identifier.urihttps://doi.org/10.1021/acs.chemmater.3c02749en_AU
dc.identifier.urihttps://apo.ansto.gov.au/handle/10238/15664en_AU
dc.identifier.volume36en_AU
dc.languageEnglishen_AU
dc.language.isoenen_AU
dc.publisherAmerican Chemical Societyen_AU
dc.subjectAlkali metalsen_AU
dc.subjectAlkali metal compoundsen_AU
dc.subjectLithiumen_AU
dc.subjectOxide mineralsen_AU
dc.subjectCrystal structureen_AU
dc.subjectSodiumen_AU
dc.subjectPotassiumen_AU
dc.subjectCationsen_AU
dc.subjectLayersen_AU
dc.titleSolid-state chemistry shuffling of alkali ions toward new layered oxide materialsen_AU
dc.typeJournal Articleen_AU
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
cm3c02749_si_001.pdf
Size:
0 B
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.66 KB
Format:
Plain Text
Description:
Collections