What drives vegetation changes in South Sulawesi during the MIS 5e transition?
dc.contributor.author | Kimbrough, A | en_AU |
dc.contributor.author | Gagan, MK | en_AU |
dc.contributor.author | Dunbar, GB | en_AU |
dc.contributor.author | Treble, PC | en_AU |
dc.contributor.author | Hantoro, WS | en_AU |
dc.contributor.author | Zhao, JX | en_AU |
dc.contributor.author | Edwards, RL | en_AU |
dc.contributor.author | Shen, CC | en_AU |
dc.contributor.author | Suwargadi, B | en_AU |
dc.contributor.author | Wong, HKY | en_AU |
dc.contributor.author | Rifai, H | en_AU |
dc.date.accessioned | 2024-09-06T02:08:55Z | en_AU |
dc.date.available | 2024-09-06T02:08:55Z | en_AU |
dc.date.issued | 2024-04-17 | en_AU |
dc.date.statistics | 2024-09-06 | en_AU |
dc.description.abstract | Sulawesi speleothem carbon isotopes (δ13C) are found to co-vary with deglacial warming and atmospheric CO2 measured from Antarctic ice cores. This co-variation has thus far been attributed to speleothem δ13C recording changes in vegetation productivity and microbial activity in the soils overlaying caves as vegetation and microbes respond to glacial-interglacial changes in temperature and atmospheric CO2 (Kimbrough et al., 2023; Krause & Kimbrough et al., in press). However, the relationship between speleothem δ13C and regional environmental change is complex and deconvolving the effect of different environmental drivers is difficult. To further investigate the ecosystem response in the Indo-Pacific Warm Pool to substantial warming and CO2 rise during the penultimate deglaciation/marine isotope stage 5e (~127 kyrs ago) we use complimentary geochemical proxies extracted from stalagmite CaCO3. These proxies include phosphorus and sulphur which respond to nutrient uptake by forest biomass above the cave (Treble et al., 2016). The relative abundance of metals such as copper, iron, zinc, and lead are assessed as another means to track biomass/soil regeneration via selective element delivery to the stalagmites by organic colloids flushed from the soil zone (Borsato et al., 2007). These vegetation proxies are compared with the speleothem δ13C and δ18O records and corresponding high-resolution fluorescence mapping of organics via confocal laser scanning (fluorescence) microscopy (Sliwinski & Stoll, 2021). The comparison of transition metals to stable isotopes (δ18O, δ13C) in the Sulawesi speleothem records makes it possible to distinguish between periods in the record where vegetation productivity increased in response to a rise in temperature and CO2 verses periods where changing hydroclimate played a more dominant role. Characterising the appropriate drivers and proxy response is critical to accurately interpret tropical paleoclimate records where interpretations rely on assumptions that rainfall is the primary driver of vegetation change. © Author(s) 2024. This work is distributed under the Creative Commons Attribution 4.0 License. | en_AU |
dc.identifier.articlenumber | EGU24-11806 | en_AU |
dc.identifier.citation | Kimbrough, A., Gagan, M., Dunbar, G., Treble, P., Hantoro, W., Zhao, J., Edwards, R. L., Shen, C.-C., Suwargadi, B., Wong, H., & Rifai, H. (2024). What drives vegetation changes in South Sulawesi during the MIS 5e transition? Presentation to the EGU General Assembly, Vienna, Austria & Online, 14-19 April 2024, EGU24-11806. doi:10.5194/egusphere-egu24-11806 | en_AU |
dc.identifier.conferenceenddate | 2024-09-06 | en_AU |
dc.identifier.conferencename | EGU General Assembly 2024 | en_AU |
dc.identifier.conferenceplace | Vienna, Austria | en_AU |
dc.identifier.conferencestartdate | 2024-04-14 | en_AU |
dc.identifier.uri | http://dx.doi.org/10.5194/egusphere-egu24-11806 | en_AU |
dc.identifier.uri | https://apo.ansto.gov.au/handle/10238/15677 | en_AU |
dc.language.iso | en | en_AU |
dc.publisher | Copernicus Publications | en_AU |
dc.relation.uri | https://doi.org/10.5194/egusphere-egu24-11806, 2024 | en_AU |
dc.subject | Carbon isotopes | en_AU |
dc.subject | Drill cores | en_AU |
dc.subject | Ice | en_AU |
dc.subject | Antarctica | en_AU |
dc.subject | Glaciers | en_AU |
dc.subject | Climatic change | en_AU |
dc.subject | Soils | en_AU |
dc.subject | Geochemistry | en_AU |
dc.subject | Biomass | en_AU |
dc.title | What drives vegetation changes in South Sulawesi during the MIS 5e transition? | en_AU |
dc.type | Conference Paper | en_AU |
Files
License bundle
1 - 1 of 1