Stability and scaling behavior of the spin cycloid in BiFeO3 thin films

dc.contributor.authorBurns, SRen_AU
dc.contributor.authorSando, Den_AU
dc.contributor.authorBertinshaw, Jen_AU
dc.contributor.authorRussell, Len_AU
dc.contributor.authorXu, Xen_AU
dc.contributor.authorMaran, Ren_AU
dc.contributor.authorCallori, SJen_AU
dc.contributor.authorRamash, Ven_AU
dc.contributor.authorCheung, Jen_AU
dc.contributor.authorDanilkin, SAen_AU
dc.contributor.authorDeng, Gen_AU
dc.contributor.authorLee, WTen_AU
dc.contributor.authorHu, Sen_AU
dc.contributor.authorBellaiche, Len_AU
dc.contributor.authorSeidel, Jen_AU
dc.contributor.authorValanoor, Nen_AU
dc.contributor.authorUlrich, Cen_AU
dc.date.accessioned2022-08-29T23:02:52Zen_AU
dc.date.available2022-08-29T23:02:52Zen_AU
dc.date.issued2018-01-30en_AU
dc.date.statistics2021-10-11en_AU
dc.description.abstractMultiferroic materials demonstrate excellent potential for next-generation multifunctional devices, as they exhibit coexisting ferroelectric and magnetic orders. Bismuth ferrite (BiFeO3) is a rare exemption where both order parameters exist far beyond room temperature, making it the ideal candidate for technological applications. To realize magnonic devices, a robust longrange spin cycloid with well-known direction is desired, since it is a prerequisite for the magnetoelectric coupling. Despite extensive investigation, the stabilization of a large-scale uniform spin cycloid in nanoscale (<300 nm) thin BiFeO3 films has not been accomplished. Using neutron diffraction we were able to demonstrate cycloidal spin order in 100 nm BiFeO3 thin films which became stable through the careful choice of crystallographic orientation and control of the electrostatic and strain boundary conditions during growth [1]. Furthermore, Co-doping, which has demonstrated to further stabilize the spin cycloid, did allow us to obtain spin cycloid order in films of just 50 nm thickness, i.e. films thinner than the cycloidal length of about 64 nm. Interestingly, in thin films the propagation direction of the spin cycloid has changed and shows a peculiar scaling behavior for thinnest films. We were able to support these observations by Monte Carlo theory based on a first-principles effective Hamiltonian method. Our results therefore offer new avenues for fundamental research and technical applications that exploit the spin cycloid in spintronic or magnonic devices.en_AU
dc.identifier.citationBurns, S. R., Sando, D., Bertinshaw, J., Russell, L., Xu, X., Maran, R., Callori, S. J., Ramesh, V., Cheung, J., Danilkin, S. A., Deng, G., Lee, W. T., Bellaiche, L., Seidel, J., Valanoor, N., & Clemens, U., (2018). Stability and scaling behavior of the spin cycloid in BiFeO3 thin films. Paper presented to the 42nd Annual Condensed Matter and Materials Meeting Charles Sturt University, Wagga Wagga, NSW 30th January – 2nd February, 2018. (pp. 27). Retrieved from: https://physics.org.au/wp-content/uploads/cmm/2018/Wagga_2018_Conference_Handbook.pdfen_AU
dc.identifier.conferenceenddate2 February 2018en_AU
dc.identifier.conferencename42nd Annual Condensed Matter and Materials Meetingen_AU
dc.identifier.conferenceplaceWagga Wagga, NSWen_AU
dc.identifier.conferencestartdate30 January 2018en_AU
dc.identifier.pagination27en_AU
dc.identifier.urihttps://physics.org.au/wp-content/uploads/cmm/2018/Wagga_2018_Conference_Handbook.pdfen_AU
dc.identifier.urihttps://apo.ansto.gov.au/dspace/handle/10238/13661en_AU
dc.language.isoenen_AU
dc.publisherAustralian Institute of Physicsen_AU
dc.subjectStabilityen_AU
dc.subjectScalingen_AU
dc.subjectSpinen_AU
dc.subjectThin filmsen_AU
dc.subjectBismuthen_AU
dc.subjectIronen_AU
dc.subjectFerroelectric materialsen_AU
dc.subjectAmbient temperatureen_AU
dc.titleStability and scaling behavior of the spin cycloid in BiFeO3 thin filmsen_AU
dc.typeConference Presentationen_AU
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Wagga_2018_Conference_Handbook.pdf
Size:
2.74 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description: