Speckle-based x-ray dark-field tomography of an attenuating object

dc.contributor.authorAlloo, SJen_AU
dc.contributor.authorPaganin, DMen_AU
dc.contributor.authorMorgan, KSen_AU
dc.contributor.authorKitchen, MJen_AU
dc.contributor.authorStevenson, AWen_AU
dc.contributor.authorMayo, SCen_AU
dc.contributor.authorLi, HTen_AU
dc.contributor.authorKennedy, BMen_AU
dc.contributor.authorMaksimenko, Aen_AU
dc.contributor.authorBowden, Jen_AU
dc.contributor.authorPavlov, KMen_AU
dc.date.accessioned2024-02-28T01:40:28Zen_AU
dc.date.available2024-02-28T01:40:28Zen_AU
dc.date.issued2021-08-01en_AU
dc.date.statistics2023-04-28en_AU
dc.description.abstractSpatial resolution in standard phase-contrast X-ray imaging is limited by the finite number and size of detector pixels. As a result, this limits the size of features that can be seen directly in projection images or tomographic reconstructions. Dark-field imaging allows information regarding such features to be obtained, as the reconstructed image is a measure of the position-dependent small-angle X-ray scattering of incident rays from the unresolved microstructure. In this paper we utilize an intrinsic speckle-tracking-based X-ray imaging technique to obtain the effective dark-field signal from a wood sample. This effective dark-field signal is extracted using a Fokker-Planck type formalism, which models the deformations of illuminating reference-beam speckles due to both coherent and diffusive scatter from the sample. We here assume that (a) small-angle scattering fans at the exit surface of the sample are rotationally symmetric, and (b) the object has both attenuating and refractive properties. The associated inverse problem, of extracting the effective dark-field signal, is numerically stabilised using a “weighted determinants” approach. Effective dark-field projection images are presented, as well as the dark-field tomographic reconstructions obtained using Fokker-Planck implicit speckle-tracking. © SPIEen_AU
dc.identifier.articlenumber118400Gen_AU
dc.identifier.booktitleProceedings Volume 11840, Developments in X-Ray Tomography XIIIen_AU
dc.identifier.citationAlloo, S. J., Paganin, D. M., Morgan, K. S., Kitchen, M. J., Stevenson, A. W., Mayo, S. C., Li, H. T., Kennedy, B. M., Maksimenko, A., Bowden, J., & Pavlov, K. M. (2021). Speckle-based x-ray dark-field tomography of an attenuating object. Paper presented to Developments in X-Ray Tomography XIII, 1-5 August 2021, San Diego, California, USA. In Muller, B. (ed). Proceedings Volume Vol. 11840, Developments in X-Ray Tomography XIII; 118400G. doi:10.1117/12.2597722en_AU
dc.identifier.conferenceenddate2021-08-05en_AU
dc.identifier.conferencenameDevelopments in X-Ray Tomography XIIIen_AU
dc.identifier.conferenceplaceSan Diego, Californiaen_AU
dc.identifier.conferencestartdate2021-08-01en_AU
dc.identifier.editorsMuller, B.en_AU
dc.identifier.issn9781510645189en_AU
dc.identifier.urihttps://doi.org/10.1117/12.2597722en_AU
dc.identifier.urihttps://apo.ansto.gov.au/handle/10238/15468en_AU
dc.identifier.volume11840en_AU
dc.language.isoenen_AU
dc.publisherSociety of Photo-Optical Instrumentation Engineers (SPIE)en_AU
dc.subjectTomographyen_AU
dc.subjectImagesen_AU
dc.subjectSmall angle scatteringen_AU
dc.subjectMicrostructureen_AU
dc.subjectFokker-Planck equationen_AU
dc.subjectSizeen_AU
dc.titleSpeckle-based x-ray dark-field tomography of an attenuating objecten_AU
dc.typeConference Paperen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description: