The magneto-structural transition in magnetocaloric Mn1-xFexCoGe
dc.contributor.author | Ren, QY | en_AU |
dc.contributor.author | Hutchison, WD | en_AU |
dc.contributor.author | Wang, JL | en_AU |
dc.contributor.author | Studer, AJ | en_AU |
dc.contributor.author | Din, MFM | en_AU |
dc.contributor.author | Muñoz-Pérez, S | en_AU |
dc.contributor.author | Cadogan, JM | en_AU |
dc.contributor.author | Campbell, SJ | en_AU |
dc.date.accessioned | 2021-08-13T02:12:54Z | en_AU |
dc.date.available | 2021-08-13T02:12:54Z | en_AU |
dc.date.issued | 2015-02-03 | en_AU |
dc.date.statistics | 2021-08-12 | en_AU |
dc.description.abstract | Magnetic refrigeration techniques based on the magnetocaloric effect are considered an increasingly viable alternative to conventional gas-compression refrigerant, particularly with energy-saving and environmental aspects in mind. Following the discovery of a large magnetocaloric effect in Gd5Si2Ge2, researchers have shifted their attention to investigation of materials exhibiting magneto-structural transitions where large magnetic entropy changes are expected. MnCoGe-based compounds are promising materials for the exploration of large magnetocaloric effects. They are relatively cheap (no rare earth elements) and, importantly, allow an appropriate temperature window (275 – 345 K) around room temperature in which the magneto-structural transition may be positioned. It has been established that Fe is a suitable substitute for Mn to ‘tune’ the structural transition temperature and hence obtain a magneto-structural transition. Here we present the results of a detailed investigation of the structural and magnetic properties and magnetocaloric effect for a range of as-prepared Mn1-xFexCoGe alloys (x = 0.01, 0.02, 0.03 and 0.04) using temperature variable x-ray diffraction (20 – 310 K), neutron diffraction (5 – 450 K) and physical properties measurement system (PPMS, 5 – 300 K). Particular attention will focus on analysis of neutron diffraction data for Mn0.98Fe0.02CoGe and the nature of the magnetic phase transition in Mn0.98Fe0.02CoGe. | en_AU |
dc.identifier.citation | Ren, Q. Y., Hutchison, W. D., Wang, J., L., Studer, A. J., Md Din, M. F., Muñoz Pérez, S., Cadogan, J. M., & Campbell, S. J. (2015). The magneto-structural transition in magnetocaloric Mn1-xFexCoGe. Paper presented at the 39th Annual Condensed Matter and Materials Meeting, Charles Sturt University, Wagga Wagga, NSW, 3 February 2015 - 6 February 2015, (pp. 59). Retrieved from: https://physics.org.au/wp-content/uploads/cmm/2015/Wagga2015_10_Handbook.pdf | en_AU |
dc.identifier.conferenceenddate | 6 February 2015 | en_AU |
dc.identifier.conferencename | 39th Annual Condensed Matter and Materials Meeting | en_AU |
dc.identifier.conferenceplace | Wagga Wagga, NSW | en_AU |
dc.identifier.conferencestartdate | 3 February 2015 | en_AU |
dc.identifier.isbn | 978-0-646-96433-1 | en_AU |
dc.identifier.pagination | 59 | en_AU |
dc.identifier.uri | https://physics.org.au/wp-content/uploads/cmm/2015/Wagga2015_10_Handbook.pdf | en_AU |
dc.identifier.uri | https://apo.ansto.gov.au/dspace/handle/10238/11348 | en_AU |
dc.language.iso | en | en_AU |
dc.publisher | Australian Institute of Physics | en_AU |
dc.subject | Cobalt alloys | en_AU |
dc.subject | Cooling systems | en_AU |
dc.subject | Energy conservation | en_AU |
dc.subject | Entropy | en_AU |
dc.subject | Germanium alloys | en_AU |
dc.subject | Magnetic fields | en_AU |
dc.subject | Magnetic refrigerators | en_AU |
dc.subject | Manganese alloys | en_AU |
dc.subject | Neutron diffraction | en_AU |
dc.subject | Temperature dependence | en_AU |
dc.subject | X-ray diffraction | en_AU |
dc.title | The magneto-structural transition in magnetocaloric Mn1-xFexCoGe | en_AU |
dc.type | Conference Abstract | en_AU |