High‐accuracy measurement of mass attenuation coefficients and the imaginary component of the atomic form factor of zinc from 8.51 keV to 11.59 keV, and X‐ray absorption fine structure with investigation of zinc theory and nanostructure

dc.contributor.authorEkanayake, RSKen_AU
dc.contributor.authorChantler, CTen_AU
dc.contributor.authorSier, Den_AU
dc.contributor.authorSchalken, MJen_AU
dc.contributor.authorIllig, AJen_AU
dc.contributor.authorde Jonge, MDen_AU
dc.contributor.authorJohannessen, Ben_AU
dc.contributor.authorKappen, Pen_AU
dc.contributor.authorTran, CQen_AU
dc.date.accessioned2025-03-20T01:01:58Zen_AU
dc.date.available2025-03-20T01:01:58Zen_AU
dc.date.issued2021-09-01en_AU
dc.date.statistics2025-03-05en_AU
dc.description.abstractHigh-accuracy X-ray mass attenuation coefficients were measured from the first X-ray Extended Range Technique (XERT)-like experiment at the Australian Synchrotron. Experimentally measured mass attenuation coefficients deviate by ∼50% from the theoretical values near the zinc absorption edge, suggesting that improvements in theoretical tabulations of mass attenuation coefficients are required to bring them into better agreement with experiment. Using these values the imaginary component of the atomic form factor of zinc was determined for all the measured photon energies. The zinc K-edge jump ratio and jump factor are determined and results raise significant questions regarding the definitions of quantities used and best practice for background subtraction prior to X-ray absorption fine-structure (XAFS) analysis. The XAFS analysis shows excellent agreement between the measured and tabulated values and yields bond lengths and nanostructure of zinc with uncertainties of from 0.1% to 0.3% or 0.003 Å to 0.008 Å. Significant variation from the reported crystal structure was observed, suggesting local dynamic motion of the standard crystal lattice. XAFS is sensitive to dynamic correlated motion and in principle is capable of observing local dynamic motion beyond the reach of conventional crystallography. These results for the zinc absorption coefficient, XAFS and structure are the most accurate structural refinements of zinc at room temperature. © International Union of Crystallography.en_AU
dc.format.mediumPrint-Electronicen_AU
dc.identifier.citationEkanayake, R. S. K., Chantler, C. T., Sier, D., Schalken, M. J., Illig, A. J., de Jonge, M. D., Johannessen, B., Kappen, P., & Tran, C. Q. (2021). High-accuracy measurement of mass attenuation coefficients and the imaginary component of the atomic form factor of zinc from 8.51 keV to 11.59 keV, and X-ray absorption fine structure with investigation of zinc theory and nanostructure. Journal of Synchrotron Radiation, 28(5), 1492-1503. doi:10.1107/S1600577521005981en_AU
dc.identifier.issn0909-0495en_AU
dc.identifier.issn1600-5775en_AU
dc.identifier.issue5en_AU
dc.identifier.journaltitleJournal of Synchrotron Radiationen_AU
dc.identifier.pagination1492-1503en_AU
dc.identifier.urihttps://doi.org/10.1107/s1600577521005981en_AU
dc.identifier.urihttps://apo.ansto.gov.au/handle/10238/16069en_AU
dc.identifier.volume28en_AU
dc.languageengen_AU
dc.language.isoenen_AU
dc.publisherInternational Union of Crystallography (IUCr)en_AU
dc.subjectZincen_AU
dc.subjectNanostructuresen_AU
dc.subjectSynchrotronsen_AU
dc.subjectPhotonsen_AU
dc.subjectCrystal structureen_AU
dc.subjectTemperature rangeen_AU
dc.subjectAbsorptionen_AU
dc.titleHigh‐accuracy measurement of mass attenuation coefficients and the imaginary component of the atomic form factor of zinc from 8.51 keV to 11.59 keV, and X‐ray absorption fine structure with investigation of zinc theory and nanostructureen_AU
dc.typeJournal Articleen_AU
dcterms.dateAccepted2021-06-08en_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.66 KB
Format:
Plain Text
Description:
Collections