Sliding silicon-based Schottky diodes: maximizing triboelectricity with surface chemistry

dc.contributor.authorFerrie, Sen_AU
dc.contributor.authorLe Brun, APen_AU
dc.contributor.authorKrishnan, Gen_AU
dc.contributor.authorAndersson, GGen_AU
dc.contributor.authorDarwish, Nen_AU
dc.contributor.authorCiampi, Sen_AU
dc.date.accessioned2024-10-03T22:31:50Zen_AU
dc.date.available2024-10-03T22:31:50Zen_AU
dc.date.issued2022-03en_AU
dc.date.statistics2024-08-28en_AU
dc.descriptionS.C. and N.D. acknowledge support from the Australian Research Council (grants no. DP190100735, FT190100148). G.G.A and G.K. acknowledge support from Microscopy Australia, from the Australian National Fabrication Facility (ANFF), and from Flinders Microscopy and Microanalysis facilities and personnel.en_AU
dc.description.abstractTriboelectric nanogenerators are an emerging energy technology which harvests electricity from mechanical energy. Within this technology there are sliding metal–semiconductor contacts, which can be miniaturized, and having a direct current (DC) output are suitable as autonomous power sources for electronic devices. Herein we explore the scope of engineering the surface chemistry of silicon towards maximizing the output of a Pt–Si Schottky diode-based triboelectric nanogenerator. Through the attachment of covalent Si–C-bound organic monolayers we have engineered silicon surface chemistry to systematically tune friction, wettability and surface work function, with the overall aim of clarifying the interplay between mechanical and electronic properties defining the DC output of a zero-bias sliding Schottky diode. Current outputs increase two-fold in amine- and alcohol-terminated monolayers compared to shorter and carbon-terminated films. This trend parallels the change in friction measured in response to surface functionalization. A pronounced effect of silicon doping on friction and current was revealed by atomic force microscopy, indicating a link between doping and friction, even at zero applied bias. This work reveals an electrical component of friction by demonstrating a friction excess in response to the flow of current, and it opens up novel avenues into the use of silicon, and its surface chemistry, as platform for triboelectric nanogenerators. © 2021 Elsevier Ltd.en_AU
dc.identifier.articlenumber106861en_AU
dc.identifier.citationFerrie, S., Le Brun, A. P., Krishnan, G., Andersson, G. G., Darwish, N., & Ciampi, S. (2022). Sliding silicon-based Schottky diodes: maximizing triboelectricity with surface chemistry. Nano Energy, 93, 106861. doi:10.1016/j.nanoen.2021.106861en_AU
dc.identifier.issn2211-2855en_AU
dc.identifier.journaltitleNano Energyen_AU
dc.identifier.pagination106861-en_AU
dc.identifier.urihttps://doi.org/10.1016/j.nanoen.2021.106861en_AU
dc.identifier.urihttps://apo.ansto.gov.au/handle/10238/15718en_AU
dc.identifier.volume93en_AU
dc.languageEnglishen_AU
dc.language.isoenen_AU
dc.publisherElsevieren_AU
dc.subjectSiliconen_AU
dc.subjectChemistryen_AU
dc.subjectElectricityen_AU
dc.subjectSemiconductor materialsen_AU
dc.subjectMetalsen_AU
dc.subjectOptoelectronic devicesen_AU
dc.subjectWettabilityen_AU
dc.subjectAtomic force microscopyen_AU
dc.subjectMechanical propertiesen_AU
dc.titleSliding silicon-based Schottky diodes: maximizing triboelectricity with surface chemistryen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.66 KB
Format:
Plain Text
Description:
Collections