Software for evaluating long-range electrostatic interactions based on the Ewald summation and its application to electrochemical energy storage materials

dc.contributor.authorShi, Wen_AU
dc.contributor.authorHe, Ben_AU
dc.contributor.authorPu, Ben_AU
dc.contributor.authorRen, Yen_AU
dc.contributor.authorAvdeev, Men_AU
dc.contributor.authorShi, SQen_AU
dc.date.accessioned2025-01-09T22:37:01Zen_AU
dc.date.available2025-01-09T22:37:01Zen_AU
dc.date.issued2022-07-28en_AU
dc.date.statistics2025-01-10en_AU
dc.description.abstractElectrochemical characteristics such as open-circuit voltage and ionic conductivity of electrochemical energy storage materials are easily affected, typically negatively, by mobile ion/vacancy ordering. Ordered phases can be identified based on the lattice gas model and electrostatic energy screening. However, the evaluation of long-range electrostatic energy is not straightforward because of the conditional convergence. The Ewald method decomposes the electrostatic energy into a real space part and a reciprocal space part, achieving a fast convergence in each. Due to its high computational efficiency, Ewald-based techniques are widely used in analyzing characteristics of electrochemical energy storage materials. In this work, we present software not only integrating Ewald techniques for two-dimensional and three-dimensional periodic systems but also combining the Ewald method with the lattice matching algorithm and bond valence. It is aimed to become a useful tool for screening stable structures and interfaces and identifying the ionic transport channels of cation conductors.en_AU
dc.description.sponsorshipWe are grateful to the developers of the pymatgen python library (14) and the ASE python library. (20) This work was supported by the National Key Research and Development Program of China (No. 2021YFB3802104), the National Natural Science Foundation of China (Nos. U2030206, 11874254), and the Key Research Project of Zhejiang Laboratory (No. 2021PE0AC02).en_AU
dc.format.mediumPrint-Electronicen_AU
dc.identifier.citationShi, W., He, B., Pu, B., Ren, Y., Avdeev, M., & Shi, S. (2022). Software for evaluating long-range electrostatic interactions based on the Ewald summation and its application to electrochemical energy storage material. The Journal of Physical Chemistry A, 126(31), 5222-5230. doi:10.1021/acs.jpca.2c02591en_AU
dc.identifier.issn1089-5639en_AU
dc.identifier.issn1520-5215en_AU
dc.identifier.issue31en_AU
dc.identifier.journaltitleThe Journal of Physical Chemistry Aen_AU
dc.identifier.pagination5222-5230en_AU
dc.identifier.urihttp://dx.doi.org/10.1021/acs.jpca.2c02591en_AU
dc.identifier.urihttps://apo.ansto.gov.au/handle/10238/15881en_AU
dc.identifier.volume126en_AU
dc.languageEnglishen_AU
dc.language.isoenen_AU
dc.publisherAmerican Chemical Societyen_AU
dc.subjectEnergyen_AU
dc.subjectElectrostaticsen_AU
dc.subjectInterfacesen_AU
dc.subjectIonsen_AU
dc.subjectCrystal latticesen_AU
dc.subjectAtomsen_AU
dc.subjectEnergy storageen_AU
dc.subjectElectrochemical cellsen_AU
dc.titleSoftware for evaluating long-range electrostatic interactions based on the Ewald summation and its application to electrochemical energy storage materialsen_AU
dc.typeJournal Articleen_AU
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
jp2c02591_si_001.pdf
Size:
242.69 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.66 KB
Format:
Plain Text
Description:
Collections