Software for evaluating long-range electrostatic interactions based on the Ewald summation and its application to electrochemical energy storage materials
dc.contributor.author | Shi, W | en_AU |
dc.contributor.author | He, B | en_AU |
dc.contributor.author | Pu, B | en_AU |
dc.contributor.author | Ren, Y | en_AU |
dc.contributor.author | Avdeev, M | en_AU |
dc.contributor.author | Shi, SQ | en_AU |
dc.date.accessioned | 2025-01-09T22:37:01Z | en_AU |
dc.date.available | 2025-01-09T22:37:01Z | en_AU |
dc.date.issued | 2022-07-28 | en_AU |
dc.date.statistics | 2025-01-10 | en_AU |
dc.description.abstract | Electrochemical characteristics such as open-circuit voltage and ionic conductivity of electrochemical energy storage materials are easily affected, typically negatively, by mobile ion/vacancy ordering. Ordered phases can be identified based on the lattice gas model and electrostatic energy screening. However, the evaluation of long-range electrostatic energy is not straightforward because of the conditional convergence. The Ewald method decomposes the electrostatic energy into a real space part and a reciprocal space part, achieving a fast convergence in each. Due to its high computational efficiency, Ewald-based techniques are widely used in analyzing characteristics of electrochemical energy storage materials. In this work, we present software not only integrating Ewald techniques for two-dimensional and three-dimensional periodic systems but also combining the Ewald method with the lattice matching algorithm and bond valence. It is aimed to become a useful tool for screening stable structures and interfaces and identifying the ionic transport channels of cation conductors. | en_AU |
dc.description.sponsorship | We are grateful to the developers of the pymatgen python library (14) and the ASE python library. (20) This work was supported by the National Key Research and Development Program of China (No. 2021YFB3802104), the National Natural Science Foundation of China (Nos. U2030206, 11874254), and the Key Research Project of Zhejiang Laboratory (No. 2021PE0AC02). | en_AU |
dc.format.medium | Print-Electronic | en_AU |
dc.identifier.citation | Shi, W., He, B., Pu, B., Ren, Y., Avdeev, M., & Shi, S. (2022). Software for evaluating long-range electrostatic interactions based on the Ewald summation and its application to electrochemical energy storage material. The Journal of Physical Chemistry A, 126(31), 5222-5230. doi:10.1021/acs.jpca.2c02591 | en_AU |
dc.identifier.issn | 1089-5639 | en_AU |
dc.identifier.issn | 1520-5215 | en_AU |
dc.identifier.issue | 31 | en_AU |
dc.identifier.journaltitle | The Journal of Physical Chemistry A | en_AU |
dc.identifier.pagination | 5222-5230 | en_AU |
dc.identifier.uri | http://dx.doi.org/10.1021/acs.jpca.2c02591 | en_AU |
dc.identifier.uri | https://apo.ansto.gov.au/handle/10238/15881 | en_AU |
dc.identifier.volume | 126 | en_AU |
dc.language | English | en_AU |
dc.language.iso | en | en_AU |
dc.publisher | American Chemical Society | en_AU |
dc.subject | Energy | en_AU |
dc.subject | Electrostatics | en_AU |
dc.subject | Interfaces | en_AU |
dc.subject | Ions | en_AU |
dc.subject | Crystal lattices | en_AU |
dc.subject | Atoms | en_AU |
dc.subject | Energy storage | en_AU |
dc.subject | Electrochemical cells | en_AU |
dc.title | Software for evaluating long-range electrostatic interactions based on the Ewald summation and its application to electrochemical energy storage materials | en_AU |
dc.type | Journal Article | en_AU |