Alkali metal-modified P2 NaxMnO2: crystal structure and application in sodium-ion batteries
dc.contributor.author | Sehrawat, D | en_AU |
dc.contributor.author | Rawal, A | en_AU |
dc.contributor.author | Cheong, S | en_AU |
dc.contributor.author | Avdeev, M | en_AU |
dc.contributor.author | Ling, CD | en_AU |
dc.contributor.author | Kimpton, JA | en_AU |
dc.contributor.author | Sharma, N | en_AU |
dc.date.accessioned | 2021-07-14T00:07:18Z | en_AU |
dc.date.available | 2021-07-14T00:07:18Z | en_AU |
dc.date.issued | 2020-08-18 | en_AU |
dc.date.statistics | 2021-07-06 | en_AU |
dc.description.abstract | Sodium-ion batteries (NIBs) are an emerging alternative to lithium-ion batteries because of the abundance of sodium resources and their potentially lower cost. Here we report the Na0.7MnO2 solid state synthesized at 1000 °C that shows two distinct phases; one adopts hexagonal P2-type P63/mmc space group symmetry, and the other adopts orthorhombic Pbma space group symmetry. The phase ratio of P2 to the orthorhombic phase is 55.0(5):45.0(4). A single-phase P2 structure is found to form at 1000 °C after modification with alkali metals Rb and Cs, while the K-modified form produces an additional minor impurity. The modification is the addition of the alkali elements during synthesis that do not appear to be doped into the crystal structure. As a cathode for NIBs, parent Na0.7MnO2 shows a second charge/discharge capacity of 143/134 mAh g–1, K-modified Na0.7MnO2 a capacity of 184/178 mAh g–1, Rb-modified Na0.9MnO2 a capacity of 159/150 mAh g–1, and Cs-modified Na0.7MnO2 a capacity of 171/163 mAh g–1 between 1.5 and 4.2 V at a current density of 15 mA g–1. The parent Na0.7MnO2 is compared with alkali metal (K, Rb, and Cs)-modified NaxMnO2 in terms of surface morphology using scanning transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy, scanning electron microscopy, 23Na solid-state nuclear magnetic resonance, and X-ray photoelectron spectroscopy and in terms of electrochemical performance and structural electrochemical evolution using in situ or operando synchrotron X-ray diffraction. © 2020 American Chemical Society | en_AU |
dc.identifier.citation | Sehrawat, D., Rawal, A., Cheong, S., Avdeev, M., Ling, C. D., Kimpton, J. A., & Sharma, N. (2020). Alkali metal-modified P2 NaxMnO2: crystal structure and application in sodium-ion batteries. Inorganic Chemistry, 59(17), 12143-12155. doi:10.1021/acs.inorgchem.0c01078 | en_AU |
dc.identifier.issn | 1520-510X | en_AU |
dc.identifier.issue | 17 | en_AU |
dc.identifier.journaltitle | Inorganic Chemistry | en_AU |
dc.identifier.pagination | 12143-12155 | en_AU |
dc.identifier.uri | https://doi.org/10.1021/acs.inorgchem.0c01078 | en_AU |
dc.identifier.uri | https://apo.ansto.gov.au/dspace/handle/10238/11054 | en_AU |
dc.identifier.volume | 59 | en_AU |
dc.language.iso | en | en_AU |
dc.publisher | American Chemical Society | en_AU |
dc.subject | Electrodes | en_AU |
dc.subject | Crystal lattices | en_AU |
dc.subject | Transition elements | en_AU |
dc.subject | Alkali metals | en_AU |
dc.subject | Transmission electron microscopy | en_AU |
dc.subject | X-ray diffraction | en_AU |
dc.subject | Electric batteries | en_AU |
dc.title | Alkali metal-modified P2 NaxMnO2: crystal structure and application in sodium-ion batteries | en_AU |
dc.type | Journal Article | en_AU |
Files
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 1.63 KB
- Format:
- Item-specific license agreed upon to submission
- Description: