In situ neutron diffraction solidification analyses of rare earth reinforced hypoeutectic and ypereutectic aluminum–silicon alloys

dc.contributor.authorStroh, Jen_AU
dc.contributor.authorSediako, Den_AU
dc.contributor.authorWeiss, Den_AU
dc.contributor.authorPeterson, VKen_AU
dc.date.accessioned2023-09-08T05:18:58Zen_AU
dc.date.available2023-09-08T05:18:58Zen_AU
dc.date.issued2020-02-24en_AU
dc.date.statistics2023-08-30en_AU
dc.description.abstractThe recognised potential of rare earth (RE) additions such as cerium (Ce) and lanthanum (La) for strengthening aluminium alloys has led to an area of research focused on the development of new alloys, targeting powertrain applications that require high temperature strength and creep resistance. In an attempt to further improve the mechanical properties of the Al–Si system, this paper addresses the effects that RE additions have on the microstructure and phase evolution during solidification. This study presents the results of in situ solidification studies using neutron diffraction and microstructural analyses using scanning electron microscopy with energy-dispersive spectroscopy of Al7Si3.5RE and Al18Si8RE alloys, where numerical notation indicates composition in wt%. We find that the RE additions lead to the formation of globular Al20Ti2(Ce6-LaNd) and rod-like Si3Al2(Ce3La2Nd) intermetallics in the Al7Si3.5RE alloy. We also find that Si and Cu additions in the Al18Si8RE alloy transforms the solid structure of the rod-like Si3Al2(Ce3La2Nd) intermetallic to a fibrous twin-layered material comprised of alternating Si3Ce1Al1(-La6Nd3Cu2Pr) and Al5Si4CeCu(La6Nd3Pr) constituents. Furthermore, the high RE content in the Al18Si8RE alloy leads to a prolonged solidification range which may increase the alloy’s susceptibility to porosity formation.en_AU
dc.identifier.citationStroh, J., Sediako, D., Weiss, D., & Peterson, V. K. (2020). In situ neutron diffraction solidification analyses of rare earth reinforced hypoeutectic and ypereutectic aluminum–silicon alloys. Paper presented to TMS 2020 and 149th TMS Annual Meeting and Exhibition, San Diego, California, 23- 27 February 2020, (pp. 142). Retrieved from https://www.tms.org/tms2020/downloads/TMS2020-Technical-Program-WEB.pdfen_AU
dc.identifier.conferenceenddate2020-02-27en_AU
dc.identifier.conferencenameTMS 2020 and 149th TMS Annual Meeting and Exhibitionen_AU
dc.identifier.conferenceplaceSan Diego, Californiaen_AU
dc.identifier.conferencestartdate2020-02-23en_AU
dc.identifier.pagination142en_AU
dc.identifier.urihttps://apo.ansto.gov.au/handle/10238/15105en_AU
dc.language.isoenen_AU
dc.publisherThe Minerals, Metals & Materials Societyen_AU
dc.relation.urihttps://www.tms.org/tms2020/downloads/TMS2020-Technical-Program-WEB.pdfen_AU
dc.subjectRare earthsen_AU
dc.subjectNeutron diffractionen_AU
dc.subjectAluminiumen_AU
dc.subjectAluminium alloysen_AU
dc.subjectReinforced materialsen_AU
dc.subjectAutomotive industryen_AU
dc.subjectSolidificationen_AU
dc.subjectKineticsen_AU
dc.subjectAlloysen_AU
dc.titleIn situ neutron diffraction solidification analyses of rare earth reinforced hypoeutectic and ypereutectic aluminum–silicon alloysen_AU
dc.typeConference Paperen_AU
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TMS2020-Technical-Program-WEB.pdf
Size:
12.01 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description: