Structural and phase evolution in U3Si2 during steam corrosion
dc.contributor.author | Liu, J | en_AU |
dc.contributor.author | Burr, PA | en_AU |
dc.contributor.author | White, JT | en_AU |
dc.contributor.author | Peterson, VK | en_AU |
dc.contributor.author | Dayal, P | en_AU |
dc.contributor.author | Baldwin, C | en_AU |
dc.contributor.author | Wakeham, D | en_AU |
dc.contributor.author | Gregg, DJ | en_AU |
dc.contributor.author | Sooby, ES | en_AU |
dc.contributor.author | Obbard, EG | en_AU |
dc.date.accessioned | 2025-01-12T23:56:45Z | en_AU |
dc.date.available | 2025-01-12T23:56:45Z | en_AU |
dc.date.issued | 2022-08-01 | en_AU |
dc.date.statistics | 2024-10-23 | en_AU |
dc.description.abstract | U3Si2 nuclear fuel is corroded in deuterated steam with in situ neutron diffraction. Density functional theory is coupled with rigorous thermodynamic description of the hydride including gas/solid entropy contributions. H absorbs in the 2b interstitial site of U3Si2Hx and moves to 8j for x ≥ 0.5. Hydriding forces lattice expansion and change in a/c ratio linked to site preference. Rietveld refinement tracks the corrosion reactions at 350–500 °C and preference for the 8j site. Above 375 °C, formation of UO2, U3Si5 and USi3 take place in the grain boundaries and bulk. Hydriding occurs in bulk and precedes other reactions. © 2022 Published by Elsevier Ltd. | en_AU |
dc.description.sponsorship | This research was undertaken with the assistance of resources and services from the National Computational Infrastructure, which is supported by the Australian Government; through the UNSW-NCI partner trial scheme; the Multi-modal Australian ScienceS Imaging and Visualisation Environment (MASSIVE); the Pawsey Supercomputing Centre, which is supported by the Australian Government and the Government of Western Australia; and was enabled by Intersect Australia Limited. The authors are grateful for beamtime allocated at the Australian Centre for neutron scattering under proposal P8186, and thank Grant Griffiths, John Macleod and Richard Collins for assistance with sample handling. | en_AU |
dc.identifier.articlenumber | 110373 | en_AU |
dc.identifier.citation | Liu, J., Burr, P. A., White, J. T., Peterson, V. K., Dayal, P., Baldwin, C., Wakeham, D., Gregg, D. J., Sooby, E. S., & Obbard, E. G. (2022). Structural and phase evolution in U3Si2 during steam corrosion. Corrosion Science, 204, 110373. doi:10.1016/j.corsci.2022.110373 | en_AU |
dc.identifier.issn | 0010-938X | en_AU |
dc.identifier.journaltitle | Corrosion Science | en_AU |
dc.identifier.uri | https://doi.org/10.1016/j.corsci.2022.110373 | en_AU |
dc.identifier.uri | https://apo.ansto.gov.au/handle/10238/15917 | en_AU |
dc.identifier.volume | 204 | en_AU |
dc.language | English | en_AU |
dc.language.iso | en | en_AU |
dc.publisher | Elsevier | en_AU |
dc.subject | Uranium | en_AU |
dc.subject | Silicon | en_AU |
dc.subject | Steam | en_AU |
dc.subject | Corrosion | en_AU |
dc.subject | Neutron diffraction | en_AU |
dc.subject | Thermodynamics | en_AU |
dc.subject | Hydrides | en_AU |
dc.subject | Gases | en_AU |
dc.subject | Solids | en_AU |
dc.subject | Intermetallic compounds | en_AU |
dc.subject | Strain rate | en_AU |
dc.subject | Absorption | en_AU |
dc.subject | Oxidation | en_AU |
dc.subject | Reactors | en_AU |
dc.subject | Fukushima Daiichi Nuclear Power Station | en_AU |
dc.subject | OPAL Reactor | en_AU |
dc.subject | Nuclear fuels | en_AU |
dc.title | Structural and phase evolution in U3Si2 during steam corrosion | en_AU |
dc.type | Journal Article | en_AU |
Files
License bundle
1 - 1 of 1