Superconcentrated electrolytes widens insertion electrochemistry to soluble layered halides

dc.contributor.authorDubouis, Nen_AU
dc.contributor.authorMarchandier, Ten_AU
dc.contributor.authorRousse, Gen_AU
dc.contributor.authorMarchini, Fen_AU
dc.contributor.authorFauth, Fen_AU
dc.contributor.authorAvdeev, Men_AU
dc.contributor.authorIadecola, Aen_AU
dc.contributor.authorPorcheron, Ben_AU
dc.contributor.authorDeschamps, Men_AU
dc.contributor.authorTarascon, JMen_AU
dc.contributor.authorGrimaud, Aen_AU
dc.date.accessioned2021-10-21T00:32:14Zen_AU
dc.date.available2021-10-21T00:32:14Zen_AU
dc.date.issued2021-03-25en_AU
dc.date.statistics2021-09-20en_AU
dc.descriptionThis content is a preprint and has not been peer-reviewed.en_AU
dc.description.abstractInsertion compounds provide the fundamental basis of today’s commercialized Li-ion batteries. Throughout history, intense research has focus on the design of stellar electrodes mainly relying on layered oxides or sulfides, and leaving aside the corresponding halides because of solubility issues. This is no longer true. In this work, we show for the first time the feasibility to reversibly intercalate electrochemically Li+ into VX3 compounds (X = Cl, Br, I) via the use of superconcentrated electrolytes, (5 M LiFSI in dimethyl carbonate), hence opening access to a novel family of LixVX3 phases. Moreover, through an electrolyte engineering approach we unambiguously prove that the positive attribute of superconcentrated electrolytes against solubility of inorganic compounds is rooted in a thermodynamic rather than a kinetic effect. The mechanism and corresponding impact of our findings enrich the fundamental understanding of superconcentrated electrolytes and constitute a crucial step in the design of novel insertion compounds with tunable properties for a wide range of applications beyond Li-ion batteries. The content is available under CC BY NC ND 4.0 License CreativeCommons.org.en_AU
dc.identifier.articlenumberchemrxiv.14282021.v1en_AU
dc.identifier.citationDubouis, N., Marchandier, T., Rousse, G., Marchini, F., Fauth, F., Avdeev, M., Iadecola, A., Porcheron, B., Deschamps, M., Tarascon, J.-M., & Grimaud, A. (2021). Superconcentrated electrolytes widens insertion electrochemistry to soluble layered halides. ChemRxiv, Version1. doi:10.26434/chemrxiv.14282021.v1en_AU
dc.identifier.issn2573-2293en_AU
dc.identifier.journaltitleChemRxiven_AU
dc.identifier.urihttps://doi.org/10.26434/chemrxiv.14282021.v1en_AU
dc.identifier.urihttps://apo.ansto.gov.au/dspace/handle/10238/12024en_AU
dc.language.isoenen_AU
dc.publisherCambridge University Pressen_AU
dc.subjectElectric batteriesen_AU
dc.subjectHalidesen_AU
dc.subjectVanadium halidesen_AU
dc.subjectSolubilityen_AU
dc.subjectElectrolytesen_AU
dc.subjectLithium ion batteriesen_AU
dc.titleSuperconcentrated electrolytes widens insertion electrochemistry to soluble layered halidesen_AU
dc.typeJournal Articleen_AU
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
superconcentrated-electrolytes-widens-insertion-electrochemistry-to-soluble-layered-halides.pdf
Size:
1.33 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections